

Large Language Models for Generative **Recommendation:** A Survey and Visionary Discussions

Lei Li¹, Yongfeng Zhang², Dugang Liu³, Li Chen¹ ¹{csleili, lichen}@comp.hkbu.edu.hk, ²yongfeng.zhang@rutgers.edu, ³dugang.ldg@gmail.com

Why Generative Recommendation

- Huge number of items on recommendation platforms
- Computationally expensive score calculation for each
- Multi-stage filtering to narrow down candidates
 - Simple methods at early stage
 - Complex models at final stage

- Simplify recommendation process to one stage
- Directly generate items for recommendation
- Implicitly enumerate all items
- Use finite tokens to represent infinite items

Gap between academic research and industrial applications

- # tokens = 1000
- ID length = 10 tokens
- # items = $1000^{10} = 10^{30}$

Generalized Definition of ID

An ID in recommender systems is a sequence of tokens that can uniquely identify an entity, such as a user or an item.

- Embedding ID
- Sequence of numerical tokens
 - <item><_><73><91>
- Sequence of word tokens
 - Item title
 - The Lord of the Rings
 - Item description
 - News article
 - Sequence of meaningless words

ID Creation Methods

LLM-compatible IDs

- Retain collaborative information of IDs in LLM environment
 - User-user
 - Item-item
 - User-item
- Short and exact representations of IDs
 - Similar users/items share more tokens
 - Remaining tokens distinguish them

Spectral Clustering

The movie is top-notch

Image credit to [1]

How to Do Generative Recommendation

Rating Prediction

Top-N Recommendation

Select one item as recommendation for user_1234 from the following candidates: item_6783, ..., item_9312, item_2834

Sequential Recommendation

Explainable Recommendation

Explain to *user_1234* why LLM item 5678 is recommended

Review Generation

Review Summarization

Conversational Recommendation

Evaluation

Automatic evaluation

Level 1

Level 2

Level 3

- RMSE and MAE for rating prediction
- NDCG, precision and recall for top-*N* recommendation and sequential recommendation
- BLEU and ROUGE for text similarity
- Online A/B tests
- Human evaluation

Challenges and Opportunities

LLM-based Agents for Trip Recommendation

Recommendation Bias

What is the boundary between bias and personalization?

Others

Hallucination

- **Content Bias**
- Transparency and Explainability
- Controllability
- Inference Efficiency
- Multimodal Recommendation
- **Cold-start Recommendation**

Conclusion

- Research of generative recommendation in line with the trend of Al
 - Discriminative AI -> generative AI

References [1] Hua, Wenyue, et al. "How to index item ids for recommendation foundation models." SIGIR-AP'23.

[2] Ge, Yingqiang, et al. "Openagi: When IIm meets domain experts." NeurIPS'24. [3] Zhang, Jizhi, et al. "Is chatgpt fair for recommendation? evaluating fairness in large language model recommendation." RecSys'23.

The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), Turin, Italy, May 20-25, 2024