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Recommendations Everywhere

3

E-commerce
(taobao.com)

Social Network
(instagram.com)

Movie
(movie.douban.com)

Video
(youtube.com)



Explainable Recommendation

• Provide an explanation to justify why an item is recommended to a 
user (Zhang and Chen, 2020)
• The style of the jacket is fashionable
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Recommender 
Systems



Explanatory Goals (Tintarev and Mashoff, 
2015)
• Trust: increase users’ confidence in the system

• Effectiveness: help users make good decisions

• Persuasiveness: convince users to try or buy

• Efficiency: help users make decisions faster

• Satisfaction: increase the ease of use or enjoyment

• Transparency: explain how the system works

• Scrutability: allow users to tell the system it is wrong
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User-centric

System-centric



Why Natural Language Explanation?

• Able to communicate 
rich information to 
users

• Massive textual data 
available online
• User reviews
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Instagram
(instagram.com)

Meituan
(meituan.com)

Google Drive
(drive.google.com)
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Motivation

• “Context is any information that can be used to characterize the 
situation of an entity.” (Abowd et al., HUC’99)
• Location

• Companion

• Time

• Context-aware recommendation has been extensively studied.

• Context-aware explanation received relatively less attention.
• This movie [Titanic] is recommended to you, because its features [plot and 

music] are suitable for your current context [wife].
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Courtesy image from 
(Mei et al., CIKM’18)



Contextual Features in User Reviews

• User reviews contain rich contextual features.
• Contexts

• Contextual features

A hotel review (tripadvisor.com)
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Contextual Feature Mining

• Extract features from user reviews via a toolkit (Zhang et al., SIGIR’14)

• Measure the relevance between a feature 𝑓 and a context 𝑐

• The larger the weight, the closer the feature to the context

• Select top features for each context
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Attention based Explanation

• Two-level attention mechanism (Luong et al., EMNLP’15) for
selecting important context and its contextual features

• Supervised attention mechanism (Liu et al., ACL’17) for matching to 
user’s preference on ground-truth features
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1. Feature distribution in target review

2. Align attention score with distribution



Datasets

• Two typical service domains
• Hotel

• Restaurant
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Contextual Feature Analysis

• The contextual feature mining approach is capable of discovering 
context-aware features.
• Harbor, shopping, and metro station for Hong Kong

• Those adopted in existing work are context-unaware features.
• Room, hotel, and staff
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Human Evaluation on Explanations

• Context-aware explanations are more helpful than context-unaware 
explanations.
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Summary

• Existing explainable recommendation approaches rarely consider 
context for producing explanations.

• We developed a new recommendation approach based on attention 
mechanism that can produce context-aware feature-level 
explanations.

• We also designed an effective contextual feature mining approach to 
identify context-aware features from user reviews.
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Existing Natural Language Explanation

• Pre-defined templates
• Human effort required

• Explanation expressiveness 
limited
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CF (Sarwar et al., WWW’01) Customers who bought this item also 
bought.

EFM (Zhang et al., SIGIR’14) You might be interested in [feature], on 
which this product performs well.

Reference They have a huge variety of things.

NRT (Li et al., SIGIR’17) The food is good.

Att2Seq (Dong et al., EACL’17) I’m not sure if I need to go back.

Reference The black garlic ramen was good as well.

NRT The food is good.

Att2Seq The food was great.

• Generated sentences
• Similar or even identical

• Sometimes irrelevant to the 
recommendation



Overview of Our Neural Template Approach
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Manually set
Automatically predicted

Encoder-decoder Structure

Personalization



Gated Fusion Recurrent Unit (GFRU)

• Two Gated Recurrent Units (GRU) (Cho et al.,
EMNLP’14) process two types of information
• The context GRU takes the previously generated 

word as input

• The feature GRU takes the given feature

• One Gated Fusion Unit (GFU) (Arevalo, 
ICLR’17 Workshop) merges them
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Word Feature
Large -> Template Small -> Feature



Feature Prediction

• Extract features from user reviews via a toolkit (Zhang et al., SIGIR’14)

• Utilize point-wise mutual information (PMI) to predict a user’s 
interest to each feature
• Measure a feature’s relevance to the user’s preferred features

• Two times better than randomly selecting target item’s features
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Datasets Construction

• Three domains
• Hotel

• Restaurant

• Movies & TV

• Explanations are 
sentences extracted 
from reviews
• Contain item features

21Adopted by (Cai, ICDM’21; Zhou et al., 2021; Hu et al., 2021)



Evaluation Metrics

• Text quality
• BLEU (Papineni et al., ACL’02) in machine translation

• ROUGE (Lin, ACL’04 Workshop) in text summarization

• Explainability: previous work mostly ignored, so we design 4 new 
metrics
• Unique Sentence Ratio (USR)

• Feature Matching Ratio (FMR)

• Feature Coverage Ratio (FCR)

• Feature Diversity (DIV)
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Adopted by (Hu et al., 2021)



Quantitative Analysis on Explanations (1)

23Our method consistently achieves the best performance on three datasets



Quantitative Analysis on Explanations (2)
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• USR different but BLEU and ROUGE close
• BLEU and ROUGE cannot properly evaluate 

sentence diversity
• We are motivated to design new metrics



Quantitative Analysis on Explanations (3)
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• Most similar to ground-truth
• Informativeness of the features
• Effectiveness of our GFRU

GRU

GFRU



Qualitative Case Study on Explanations

• Good linguistic quality
• Learn templates from data, e.g., “__ are 

large/comfortable”

• Good controllability
• Generate targeted explanations for 

different features

• Produce personalized explanations for 
different user-item pairs

• Take the sentiment into account
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Human Evaluation on Yelp

• High-quality explanations relative to baseline

• Helpful to better understand the recommendations
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Summary

• Bridge the merits of template and generation approaches
• Generate neural template explanations

• Improve the expressiveness and quality of explanations

• Design four novel metrics
• Particularly care about the explainability of generated explanations

• Show the controllability of our model
• Generate explanations about the given user, item, sentiment, and features
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Motivation

• To generate neural template explanation, an item feature must be
specified
• Location

• Breakfast

• Problems
• What if there is no feature?

• What if there are multiple features?

• How to accommodate any number of features?
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• A well-known model employed in many fields

• Auto-regressive natural language generation
• Predict future tokens based on past tokens

Transformer (Vaswani et al., NIPS’17)
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<bos> In Kowloon Tong

<eos>In Kowloon Tong

Where is HKBU ?

Transformer



Problem for Explanation Generation
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<bos> food is good

<eos>The food is

UserID ItemID

Transformer

The

good

• Consider IDs as tokens, like words, and perform auto-regressive 
generation

Why “the food is good” for almost every user-item pair?



Attention Visualization

• The model relies heavily on <bos> for generation

• Attention weights of userID and itemID are 0
• Model insensitive to IDs
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Problem Analysis

• Frequency mismatch between IDs and words
• One user/item ID vs. hundreds of words in a review

• An ID appears only a few times

• IDs being regarded as uncommon words (OOV tokens)
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A restaurant review
(yelp.com)



Solution: Context Prediction

• Bridge IDs and words, and give the former linguistic 
meanings

• Difference
• Context prediction: predict explanation words in one step

• Explanation generation: generate them one by one

• Incorporate any number of features for targeted 
generation: none, one, or multiple
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• Our model can well utilize IDs for generation

Attention Visualization Again
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Experimental Settings (Li et al., CIKM’20)

• Datasets
• Yelp

• Amazon

• TripAdvisor

• Metrics
• Text quality: BLEU & ROUGE

• Explainability from the angle of item features
• Unique Sentence Ratio (USR)

• Feature Matching Ratio (FMR)

• Feature Coverage Ratio (FCR)

• Feature Diversity (DIV)
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Quantitative Analysis on Explanations
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Less useful, if unable to guarantee text quality

IDs only

With features Ours the best or comparable



Qualitative Case Study on Explanations

• Context prediction task can 
indeed give IDs linguistic 
meanings

• Two tasks resemble one’s 
drafting-polishing process

• The incorporated features 
further improve text 
quality
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Summary

• Propose a general explanation generation approach
• Accommodate any number of item features

• Enable Transformer with personalized natural language generation
• Shed light on other fields that also need personalization, e.g., personalized 

conversational systems

• Design a task to connect IDs and words
• Point out a way for Transformer to deal with heterogeneous data, e.g., image 

generation based on text in multi-modal AI
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Beyond: Image Generation

• Adopt our PETER model as the backbone (Geng et al., ACL’22)

• Key idea: convert an image into a sequence of tokens as if a sentence
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Problems of Natural Language Generation

• Fit the given samples rather than creating new explanations

• Sometimes deviate from the facts
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GPT-2
Transformer or 

RNN

The food 
is good

Four-horned 
unicorns



Information Retrieval vs. Explanation Ranking

• Rank available documents

• Enable standard evaluation via ranking metrics
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Search 
Engine

Recommender 
Systems

Query

Ranked 
documents

1

2

3

Recommendation

Ranked 
explanations

1

2

3



Wisdom of the Crowd

• Detect co-occurring sentences across reviews

• Create user-item-explanation interactions

• Allow to design collaborative filtering algorithms
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Near-duplicate Detection

• Quadratic time complexity for comparing any two sentences
• Conduct near-duplicate detection in sub-linear time with Locality-Sensitive 

Hashing (LSH) (Rajaraman and Ullman, 2011)

• Remove already matched sentences
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Naïve way More efficient way

vs.



Datasets Construction

• Explanations
• Concise and informative

• Well suit target application domains

• Interaction records very sparse

47



Problem Formulation

• Item recommendation

• Explanation ranking

• Item-explanation joint-ranking
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Tensor Factorization vs. Matrix Factorization

• Decompose user-item-explanation (TF) into user-explanation (MF) 
and item-explanation (MF) to address data sparsity issue
• Leverage user, item, and explanation IDs only

• Incorporate explanation text with BERT (Devlin et al., NAACL’19)
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Results of Explanation Ranking

• Both approaches are very effective
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Item-explanation Joint-ranking

• Purposely select some explanations to improve the chance of 
clicking/purchasing

• Improve both recommendation and explanation performance
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Summary

• Formulate the recommendation explanation problem as ranking task

• Attempt to achieve standard offline evaluation of explainability

• Construct three large datasets for explanation ranking

• Develop two effective models to address the data sparsity issue

• Study the relation between explanation and recommendation via the 
item-explanation joint-ranking

52



Conclusion

• 1 topic: explainable recommendation

• 2 sets of datasets: natural language generation, explanation ranking

• 3 explanation formats: template, generation, ranking

• 4 approaches: attention, RNN, transformer, tensor factorization

• 5 published papers: JIIS 2021, WWW’20 (demo), CIKM’20, ACL’21, 
SIGIR’21 (resource), TIST 2022 (submitted)
• Other first-author papers: ICDE’19 (workshop), RecSys’22 (submitted), TOIS 

2022 (submitted)
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Ethical Issue in Explanation Models

• In the joint-ranking formulation, purposely selected explanations 
could help improve recommendation accuracy.
• Are they faithful to the recommendations?

• What if they are chosen simply because they can lure and manipulate user’s 
clicking/purchasing?
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Machine User



Bias in Natural Language Generation

• Bias in Pre-trained model GPT-2 (Liang et al., ICML’21)

• Does such bias still exist or could it be amplified, when adapted to 
downstream tasks?
• Recommendation explanation generation

• How to mitigate the bias in order to achieve fairer and more inclusive 
machine learning?
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Interpretability of Pre-trained Models

• In what form does the bias exist in pre-trained models?
• Transparency

• Fairness

• Potential applications
• Recommender systems

• Information retrieval systems

• Conversational systems

• Image captioning systems
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