

DEPARTMENT OF COMPUTER SCIENCE

HONG KONG BAPTIST UNIVERSITY 香港浸會大學計算機科學系

Natural Language Explanation for Recommendations and Beyond

Lei Li

Supervisor: Dr. Li Chen

Ph.D. Thesis Defense

Apr. 27, 2022

Outline

Introduction

- Explainable Recommendation
- Context-aware Explanation
- Neural Template Explanation Generation
- Natural Language Explanation Generation
- Explanation Ranking
- Future Work

Recommendations Everywhere

○ 换一组

月销: 676

See All

E-commerce (taobao.com)

Social Network

(instagram.com)

月销: 387

月销: 996

Suggested for you

企鹅公路

天空之城

Mix - Symphony - Clean Bandit feat. Zara

Madilyn Bailey, Alex & Sierra, Alessia Cara, and more

Mix - Believe Cher // Madilyn Bailey [Official

Madilyn Bailey, Kurt Hugo Schneider, Sam Tsui, and

喜欢这部电影的人也喜欢 · · · · ·

Larsson

Music Video]

秒速5厘米

Acoustic guitar Drones Pop Rock Pop Music Alternative Rock Folk Music Photography Cooking Hiking Tourism

Mix - Avril Lavigne - Complicated (Official

Avril Lavigne, Simple Plan, Rihanna, and more

Avril Lavigne - Wish You Were Here @

Live at Good Morning America..

AvrilAddicted10

54K views · 7 years ago

Video)

Avril

哈尔的移动城堡

青春期猪头少年不

做怀梦少女的梦

若能与你共乘海浪

之上

我想吃掉你的胰脏

Jessie J - Who You Are - Acoustic Cove by Madilyn Bailey

4.2M views • 7 years ago

Madilyn 🖌

My Mix

Madilyn Bailey and more

Video

(youtube.com)

Movie (movie.douban.com)

3

Explainable Recommendation

- Provide an explanation to justify why an item is recommended to a user (Zhang and Chen, 2020)
 - The style of the jacket is fashionable

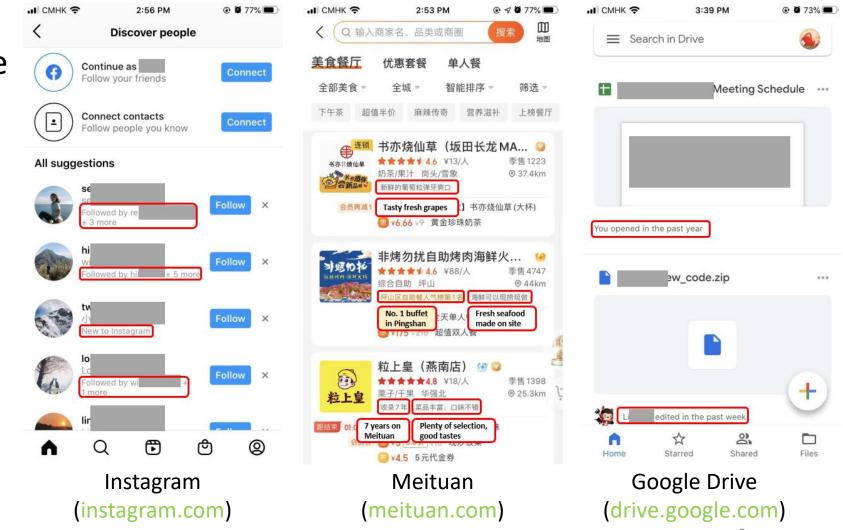
Explanatory Goals (Tintarev and Mashoff, 2015)

- Trust: increase users' confidence in the system
- Effectiveness: help users make good decisions
- Persuasiveness: convince users to try or buy
- Efficiency: help users make decisions faster
- Satisfaction: increase the ease of use or enjoyment
- Transparency: explain how the system works
- Scrutability: allow users to tell the system it is wrong

System-centric

Why Natural Language Explanation?

- Able to communicate rich information to users
- Massive textual data available online
 - User reviews



Outline

- Introduction
- Context-aware Explanation
 - JIIS 2021
- Neural Template Explanation Generation
- Natural Language Explanation Generation
- Explanation Ranking
- Future Work

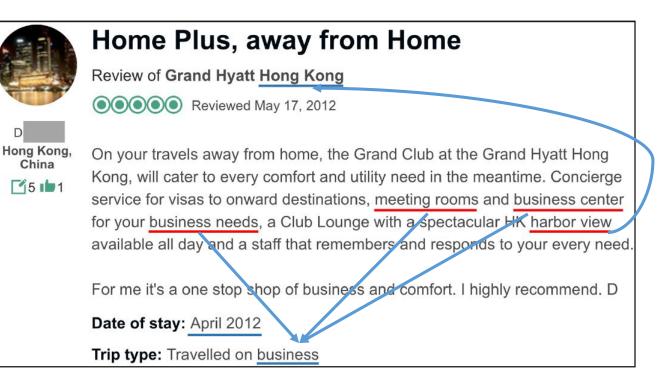
Motivation

- "Context is any information that can be used to characterize the situation of an entity." (Abowd et al., HUC'99)
 - Location
 - Companion
 - Time
- Context-aware recommendation has been extensively studied.
- Context-aware explanation received relatively less attention.
 - This movie [Titanic] is recommended to you, because its **features** [*plot and music*] are suitable for your current context [wife].

Contextual Features in User Reviews

- User reviews contain rich contextual features.
 - Contexts
 - Contextual features

How to correlate a feature with a context?



A hotel review (tripadvisor.com)

Contextual Feature Mining

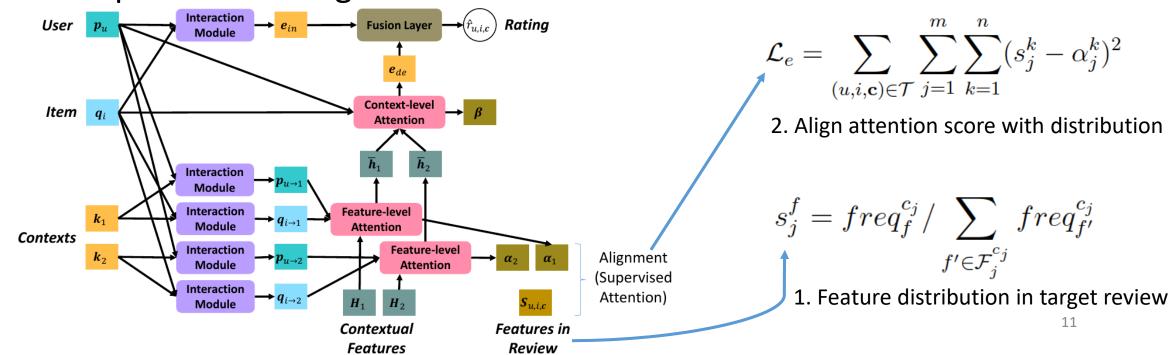
- Extract features from user reviews via a toolkit (Zhang et al., SIGIR'14)
- Measure the relevance between a feature *f* and a context *c*

$$avg_{f} = \frac{1}{|\mathcal{C}_{j}|} \sum_{c \in \mathcal{C}_{j}} PMI_{f}^{c}$$
$$PMI_{f}^{c} = \frac{freq_{f}^{c}}{freq_{f} \cdot freq^{c}} \quad err_{f}^{c} = PMI_{f}^{c} - avg_{f}$$
$$w_{f}^{c} = \left|err_{f}^{c}\right|$$

- The larger the weight, the closer the feature to the context
- Select top features for each context

Attention based Explanation

- **Two-level attention** mechanism (Luong et al., EMNLP'15) for selecting important context and its contextual features
- Supervised attention mechanism (Liu et al., ACL'17) for matching to user's preference on ground-truth features



Datasets

- Two typical service domains
- Tripadvisor. yelp:

- Hotel
- Restaurant

	TripAdvisor	Yelp
# of users	9,765	27,147
$\# ext{ of items}$	6,280	20,266
# of reviews	320,023	1,293,247
Avg. # of reviews / user	32.77	47.64
Avg. # of reviews / item	50.96	63.81
# of contextual variables in companion	6	-
# of contextual variables in day of a week	-	7
# of contextual variables in month	13	12
# of contextual variables in destination	415	242

Contextual Feature Analysis

- The contextual feature mining approach is capable of discovering context-aware features.
 - Harbor, shopping, and metro station for Hong Kong
- Those adopted in existing work are context-unaware features.
 - Room, hotel, and staff

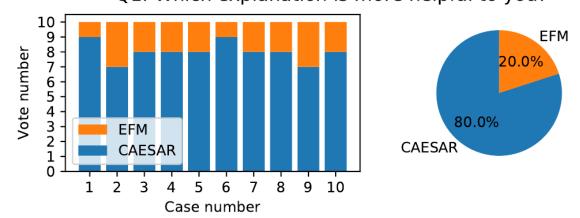
(a) Contextual features for <u>business</u>

(b) Contextual features for couples

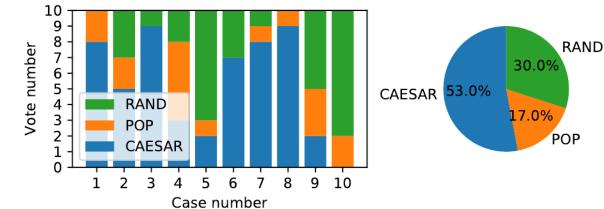
(c) Contextual features for <u>Hong Kong</u> (d) Features according to occurring frequency

Human Evaluation on Explanations

• Context-aware explanations are more helpful than context-unaware explanations. Q1: Which explanation is more helpful to you?



Q2: Which feature list better describes the given context?



Summary

- Existing explainable recommendation approaches rarely consider context for producing explanations.
- We developed a new recommendation approach based on attention mechanism that can produce context-aware feature-level explanations.
- We also designed an effective contextual feature mining approach to identify context-aware features from user reviews.

Outline

- Introduction
- Context-aware Explanation
- Neural Template Explanation Generation
 - WWW'20 (demo) & CIKM'20
- Natural Language Explanation Generation
- Explanation Ranking
- Future Work

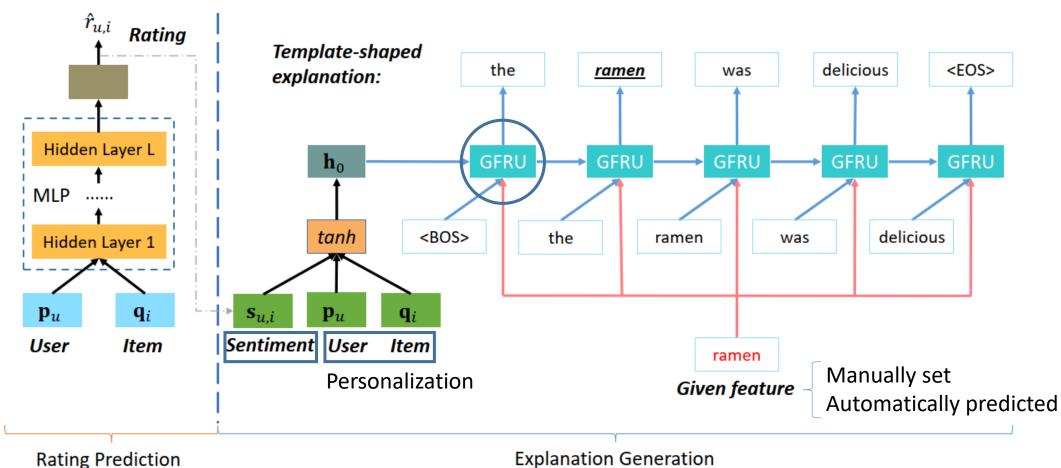
Existing Natural Language Explanation

- Pre-defined templates
 - Human effort required
 - Explanation expressiveness limited
- Generated sentences
 - Similar or even identical
 - Sometimes irrelevant to the recommendation

CF (Sarwar et al., WWW'01)	Customers who bought this item also bought.
EFM (Zhang et al., SIGIR'14)	You might be interested in [<i>feature</i>], on which this product performs well.

Reference	They have a huge variety of things.
NRT (Li et al., SIGIR'17)	The food is good.
Att2Seq (Dong et al., EACL'17)	I'm not sure if I need to go back.
Reference	The black garlic ramen was good as well.
NRT	The food is good.
Att2Seq	The food was great.

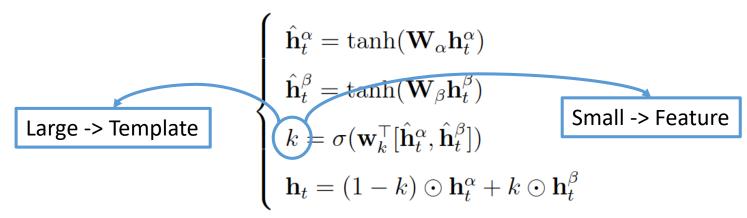
Overview of Our Neural Template Approach

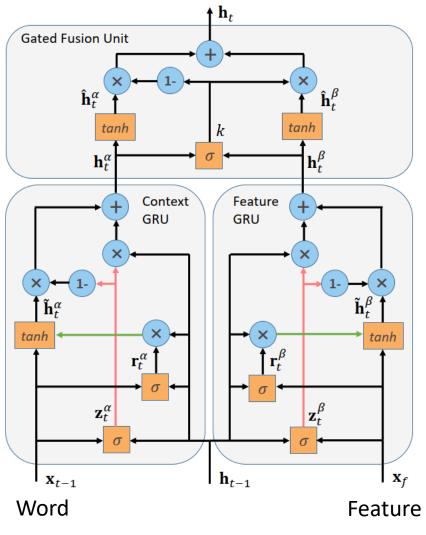


Encoder-decoder Structure

Gated Fusion Recurrent Unit (GFRU)

- Two Gated Recurrent Units (GRU) (Cho et al., EMNLP'14) process two types of information
 - The context GRU takes the previously generated word as input
 - The feature GRU takes the given feature
- One Gated Fusion Unit (GFU) (Arevalo, ICLR'17 Workshop) merges them





Feature Prediction

- Extract features from user reviews via a toolkit (Zhang et al., SIGIR'14)
- Utilize point-wise mutual information (PMI) to predict a user's interest to each feature
 - Measure a feature's relevance to the user's preferred features $\hat{f}_{i} = \operatorname{argmax}_{f \in \mathcal{F}_{i}} \operatorname{PMI}(\mathcal{F}_{u}, f)$ $\operatorname{PMI}(\mathcal{F}_{u}, f) = \log \frac{p(\mathcal{F}_{u}|f)}{p(\mathcal{F}_{u})} \approx \log \frac{\prod_{f' \in \mathcal{F}_{u}} p(f'|f)}{\prod_{f' \in \mathcal{F}_{u}} p(f')} = \sum_{f' \in \mathcal{F}_{u}} \log \frac{p(f'|f)}{p(f')} = \sum_{f' \in \mathcal{F}_{u}} \operatorname{PMI}(f', f)$ $\operatorname{PMI}(f_{u}, f_{i}) = \log \frac{p(f_{u}, f_{i})}{p(f_{u})p(f_{i})} = \log \frac{p(f_{u}|f_{i})}{p(f_{u})}$
- Two times better than randomly selecting target item's features

Datasets Construction

00

- Three domains
 - Hotel
 - Restaurant
 - Movies & TV
- Explanations are sentences extracted from reviews
 - Contain item features

Tripadvisor TripAdvisor Amazon Yelp # of users 9,765 27,1477,506 # of items 6,280 20,2667,360 320,023 # of reviews 1,293,247 441,783 5,069# of features 7,340 5,399 Avg. # of reviews / user 32.77 47.64 58.86 63.81Avg. # of reviews / item 50.9660.02Avg. # of words / explanation 13.0112.3214.14

yelp

Adopted by (Cai, ICDM'21; Zhou et al., 2021; Hu et al., 2021)

amazon

Evaluation Metrics

- Text quality
 - BLEU (Papineni et al., ACL'02) in machine translation
 - ROUGE (Lin, ACL'04 Workshop) in text summarization
- Explainability: previous work mostly ignored, so we design 4 new metrics
 - Unique Sentence Ratio (USR)
 - Feature Matching Ratio (FMR)
 - Feature Coverage Ratio (FCR)
 - Feature Diversity (DIV)

$$USR = |\mathcal{E}| / N$$

 $FMR = \frac{1}{N} \sum_{u,i} \delta(f_{u,i} \in \hat{E}_{u,i})$ Adopted by (Hu et al., 2021)
 $FCR = N_g / |\mathcal{F}|$

$$DIV = \frac{2}{N \times (N-1)} \sum_{u,u',i,i'} \left| \hat{\mathcal{F}}_{u,i} \cap \hat{\mathcal{F}}_{u',i'} \right|$$

Quantitative Analysis on Explanations (1)

	Personalization			BLE	BLEU (%)		ROUGE-1 (%)			ROUGE-2 (%)		
	USR	FMR	FCR	DIV	BLEU-1	BLEU-4	Precision	Recall	F1	Precision	Recall	F1
	Personalization				BLE	U (%)	ROUGE-1 (%)			ROUGE-2 (%)		
	USR	FMR	FCR	DIV	BLEU-1	BLEU-4	Precision	Recall	F1	Precision	Recall	F1
	Personalization			BLEU	J (%)	RO	DUGE-1 (%)	ROU	UGE-2 (¢	%)	
	USR	FMR	FCR	DIV	BLEU-1	BLEU-4	Precision	Recall	F1	Precision	Recall	F1
NRT	0.00	-	0.01	5.46	14.02	0.57	23.57	14.24	16.87	2.53	1.70	1.92
Att2Seq	0.34	-	0.18	2.81	12.78	1.01	20.53	13.49	15.42	2.77	1.87	2.09
NETE-GRU	0.38	-	0.11	2.34	12.10	0.95	20.16	12.93	14.93	2.63	1.75	1.97
NETE-PMI	0.72	0.50	0.19	3.06	13.02	0.82	20.93	12.76	14.99	2.36	1.63	1.81
NETE	0.57**	0.71	0.19*	1.93**	18.76**	2.46^{**}	33.87**	21.43**	24.81**	7.58**	4.77**	5.46^{**}
Improvement (%)	+69.1	-	+5.6	+45.2	+33.8	+143.6	+43.7	+50.5	+47.1	+174.3	+154.9	+161.2

Our method consistently achieves the best performance on three datasets

Quantitative Analysis on Explanations (2)

	Personalization			BLEU (%)		ROUGE-1 (%)			ROUGE-2 (%)			
	USR	FMR	FCR	DIV	BLEU-1	BLEU-4	Precision	Recall	F1	Precision	Recall	F1
NRT	0.00	-	0.00	13.61	14.26	0.80	17.57	16.52	16.56	2.45	2.64	2.48
Att2Seq	0.18	-	0.17	3.93	14.76	1.01	19.26	14.45	15.83	2.43	1.96	2.06
NETE-GRU	0.27	-	0.15	3.00	13.84	0.92	18.55	13.64	15.02	2.23	1.76	1.86
NETE-PMI	0.79	0.38	0.30	2.92	14.55	0.82	17.84	13.96	14.90	2.01	1.70	1.74
NETE	0.57**	0.78	0.27**	2.22^{**}	22.39**	3.66 **	35.68**	24.86**	27.71^{**}	10.20**	6.98**	7.66**
Improvement $(\%)$	+210.7	-	+57.1	+77.1	+51.7	+261.3	+85.2	+50.5	+67.3	+317.0	+164.0	+209.1

- USR different but BLEU and ROUGE close
 - BLEU and ROUGE cannot properly evaluate sentence diversity
 - We are motivated to design new metrics

Quantitative Analysis on Explanations (3)

	Personalization			BLEU (%)		ROUGE-1 (%) G R			U ROUGE-2 (%)			
	USR	FMR	FCR	DIV	BLEU-1	BLEU-4	Precision	Recall	F1	Precision	Recall	F1
NRT	0.00	-	0.00	13.61	14.26	0.80	17.57	16.52	16.56	2.45	2.64	2.48
Att2Seq	0.18	-	0.17	3.93	14.76	1.01	19.26	14.45	15.83	2.43	1.96	2.06
NETE-GRU	0.27	-	0.15	3.00	13.84	0.92	18.55	13.64	15.02	2.23	1.76	1.86
NETE-PMI	0.79	0.38	0.30	2.92	14.55	0.82	17.84	13.96	14.90	2.01	1.70	1.74
NETE	0.57**	0.78	0.27**	2.22**	22.39**	3.6 <u>6</u> **	35.68^{**}	24.86**	27.71**	10.20^{**}	6.98**	7.66**
Improvement (%)	+210.7	-	+57.1	+77.1	+51.7	+261.3	+85.2	+50.5	+67.3	+317.0	+164.0	+209.1

- Most similar to ground-truth
 - Informativeness of the features
 - Effectiveness of our GFRU

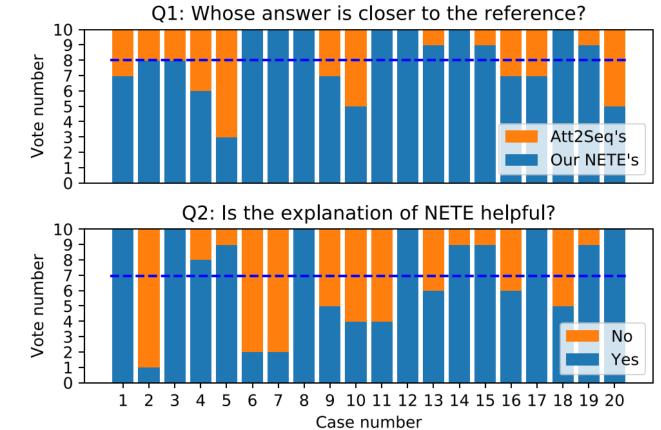
Qualitative Case Study on Explanations

- Good linguistic quality
 - Learn templates from data, e.g., "____ are large/comfortable"
- Good controllability
 - Generate targeted explanations for different features
 - Produce personalized explanations for different user-item pairs
 - Take the sentiment into account

Rating	Feature	Explanation
4		The rooms are spacious and the bathroom has a
		large tub.
	bathroom	The bathroom was large and had a separate shower.
3.90	tub	The bathroom had a separate shower and tub .
	rooms	The rooms are large and comfortable.
4		The rooms are brilliant and ideal for business trav-
		ellers.
4.13	rooms	The rooms are very spacious and the rooms are very com-
		fortable.
2		The broken furniture and dirty surfaces are a dead
		giveaway.
2.96	furniture	The furniture is worn.
4		Ideal for plane spotters and very close to the air-
		port.
2.76	airport	It is not close to the airport .

Human Evaluation on Yelp

- High-quality explanations relative to baseline
- Helpful to better understand the recommendations



Summary

- Bridge the merits of template and generation approaches
 - Generate neural template explanations
 - Improve the expressiveness and quality of explanations
- Design four novel metrics
 - Particularly care about the explainability of generated explanations
- Show the controllability of our model
 - Generate explanations about the given user, item, sentiment, and features

Outline

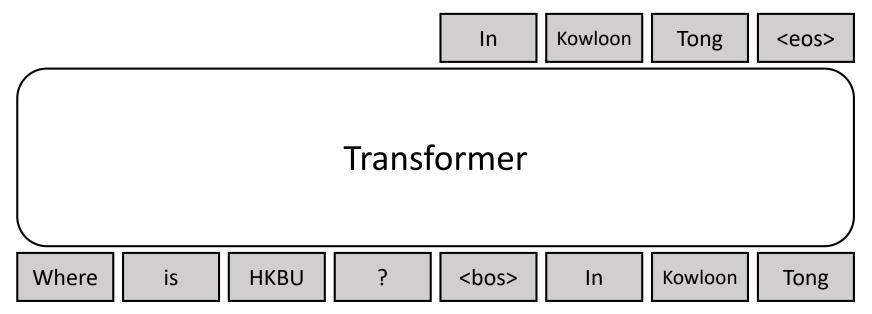
- Introduction
- Context-aware Explanation
- Neural Template Explanation Generation
- Natural Language Explanation Generation
 - ACL'21
- Explanation Ranking
- Future Work

Motivation

- To generate neural template explanation, an item feature must be specified
 - Location
 - Breakfast
- Problems
 - What if there is no feature?
 - What if there are multiple features?
 - How to accommodate any number of features?

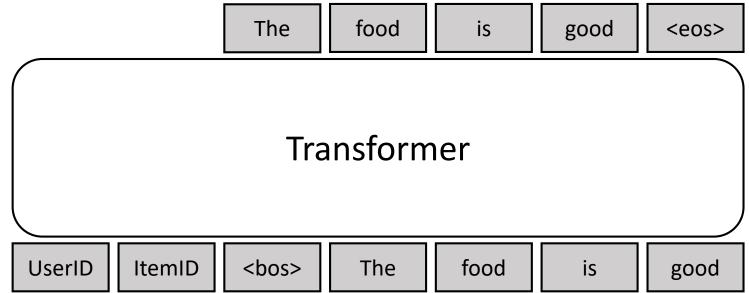
Transformer (Vaswani et al., NIPS'17)

- A well-known model employed in many fields
- Auto-regressive natural language generation
 - Predict future tokens based on past tokens



Problem for Explanation Generation

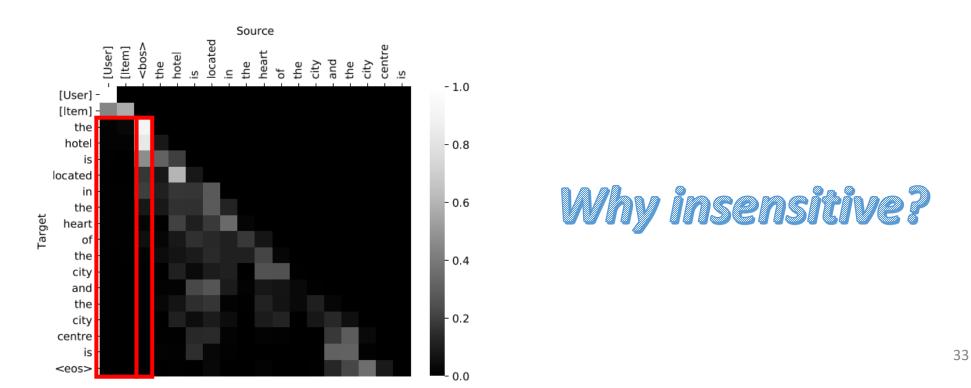
Consider IDs as tokens, like words, and perform auto-regressive generation



Why "the food is good" for almost every user-item pair?

Attention Visualization

- The model relies heavily on <bos> for generation
- Attention weights of userID and itemID are 0
 - Model insensitive to IDs



Problem Analysis

- Frequency mismatch between IDs and words
 - One user/item ID vs. hundreds of words in a review
 - An ID appears only a few times
- IDs being regarded as uncommon words (OOV tokens)

*** * * * *** 12/4/2019

🛛 6 photos

Ho Lee Fook was one of the best food spots I went to in HK. At first I was skeptical because sometimes the fusion or westernized type Asian restaurants are all for the look but don't taste great. But, Ho Lee Fook was beautiful inside and the food was amazing. We ordered the pan fried thick rolled noodles and the massive bone steak (forgot the actually name) but you won't miss it on the menu. The noodles were crispy and seasoned just right. The steak was so tender and delicious. It came with a jalapeño sauce on the plate which complimented it so well.

While being here I forgot I was in HK because everyone spoke English and the menu was also in English! The entrance is so cute with the lucky cats all on the walls.

If you are visiting HK or live there I definitely recommend giving this place a try! It is a little on the pricey side but for the atmosphere it is expected.

A restaurant review (yelp.com)

Solution: Context Prediction

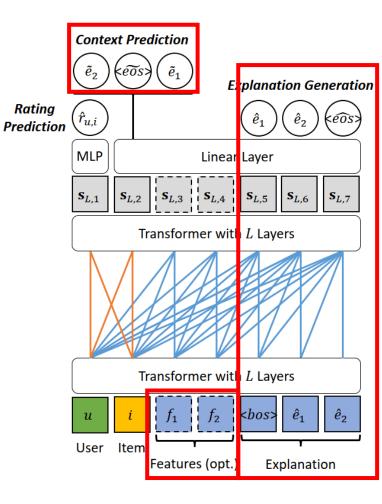
- Bridge IDs and words, and give the former linguistic meanings
- Difference
 - Context prediction: predict explanation words in one step

$$\mathcal{L}_{c} = \frac{1}{|\mathcal{T}|} \sum_{(u,i)\in\mathcal{T}} \frac{1}{|E_{u,i}|} \sum_{t=1}^{|E_{u,i}|} -\log c_{2}^{e_{t}}$$

• Explanation generation: generate them one by one

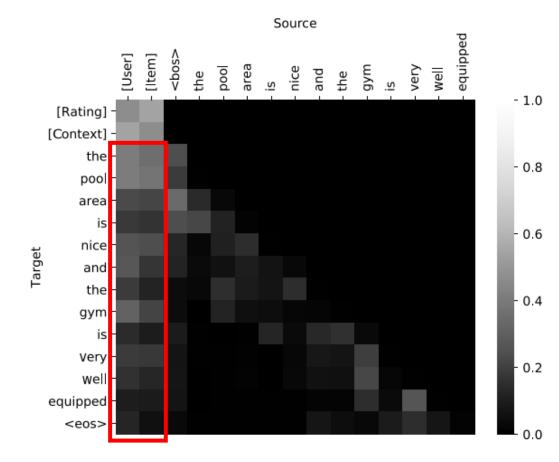
$$\mathcal{L}_{e} = \frac{1}{|\mathcal{T}|} \sum_{(u,i)\in\mathcal{T}} \frac{1}{|E_{u,i}|} \sum_{t=1}^{|E_{u,i}|} -\log c_{2+|F_{u,i}|+t}^{e_{t}}$$

• Incorporate any number of features for targeted generation: none, one, or multiple



Attention Visualization Again

• Our model can well utilize IDs for generation



Experimental Settings (Li et al., CIKM'20)

- Datasets
 - Yelp
 - Amazon
 - TripAdvisor
- Metrics
 - Text quality: BLEU & ROUGE
 - Explainability from the angle of item features
 - Unique Sentence Ratio (USR)
 - Feature Matching Ratio (FMR)
 - Feature Coverage Ratio (FCR)
 - Feature Diversity (DIV)

Quantitative Analysis on Explanations

Less useful, if unable to guarantee text quality

With features

		Explainability			Text Quality										
		Explainability			Text Quality										
		Explainability				Text Quality									
	FMR↑ FC			DIV↓	USR↑	B1↑	B4↑	R1-P↑	R1-R↑	R1-F↑	R2-P↑	R2-R↑	R2-F↑		
-	Transformer	0.06	0.06	2.46	0.01	7.39	0.42	19.18	10.29	12.56	1.71	0.92	1.09		
IDs c	only NRT	<u>0.07</u>	0.11	<u>2.37</u>	<u>0.12</u>	11.66	<u>0.65</u>	17.69	<u>12.11</u>	<u>13.55</u>	1.76	<u>1.22</u>	<u>1.33</u>		
	Att2Seq	<u>0.07</u>	<u>0.12</u>	2.41	0.13	10.29	0.58	<u>18.73</u>	11.28	13.29	<u>1.85</u>	1.14	1.31		
	PETER	0.08**	0.19**	1.54^{**}	0.13	<u>10.77</u>	0.73**	18.54	12.20	13.77^{**}	2.02^{**}	1.38^{**}	1.49**		
-	ACMLM	0.05	<u>0.31</u>	0.95	0.95	7.01	0.24	7.89	7.54	6.82	0.44	0.48	0.39		
	NETE	<u>0.80</u>	0.27	1.48	0.52	<u>19.31</u>	2.69	33.98	22.51	25.56	8.93	5.54	<u>6.33</u>		
	PETER+	0.86**	0.38**	<u>1.08</u>	0.34	20.80**	3.43**	35.44^{**}	26.12^{**}	27.95^{**}	10.65^{**}	7.44^{**}	7.94**		
-															

Ours the best or comparable

Qualitative Case Study on Explanations

- Context prediction task can indeed give IDs linguistic meanings
- Two tasks resemble one's drafting-polishing process
- The incorporated features further improve text quality

	Top-15 Context Words	Explanation			
Ground-truth		the rooms are spacious and			
Ground-truth		the bathroom has a large tub			
DETED	(
PETER	$\langle \cos \rangle$ the and a <u>pool</u> was with	the <u>pool</u> area is nice and the			
	nice is very were to good in of	$\underline{\operatorname{gym}}$ is very well equipped			
		<eos></eos>			
PETER+	$<\!\!\operatorname{eos}\!>$ the and a was $\underline{\operatorname{pool}}$ with	the $\underline{\text{rooms}}$ were clean and			
	to nice good very were is of in	comfortable < eos >			
Ground-truth		beautiful lobby and nice bar			
PETER	$<\!\!\operatorname{eos}\!>$ the and a was were sepa-	the $\underline{bathroom}$ was large and			
	rate $\underline{bathroom}$ with \underline{shower} large	the <u>shower</u> was great $<\!\!\mathrm{eos}\!>$			
	very had in is				
PETER+	$<\!$ eos $>$ the and a was <u>bathroom</u>	the \underline{lobby} was very nice and			
	shower with large in separate	the <u>rooms</u> were very comfort-			
	were <u>room</u> very is	able $<\!\!\mathrm{eos}\!>$			

Summary

- Propose a general explanation generation approach
 - Accommodate any number of item features
- Enable Transformer with personalized natural language generation
 - Shed light on other fields that also need personalization, e.g., personalized conversational systems
- Design a task to connect IDs and words
 - Point out a way for Transformer to deal with heterogeneous data, e.g., image generation based on text in multi-modal AI

Beyond: Image Generation

- Adopt our PETER model as the backbone (Geng et al., ACL'22)
- Key idea: convert an image into a sequence of tokens as if a sentence

Inputs:

User A, Item 1, Feat. word: floors Outputs: Pred. rating: 4.62 Gen. explanation: higher floors have better view Image visualization:

Inputs:

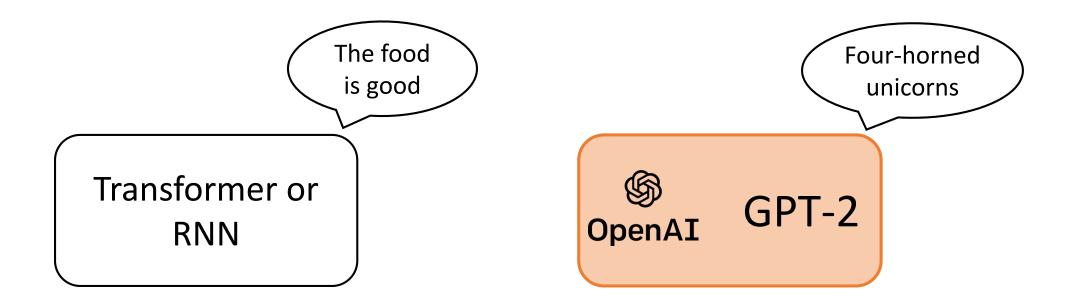
User B, Item 2, Feat. word: seat Outputs: Pred. rating: 4.15 Text explanation: we were seated immediately and ordered our food Image visualization:

Outline

- Introduction
- Context-aware Explanation
- Neural Template Explanation Generation
- Natural Language Explanation Generation
- Explanation Ranking
 - SIGIR'21 (resource) & TIST 2022 (submitted)
- Future Work

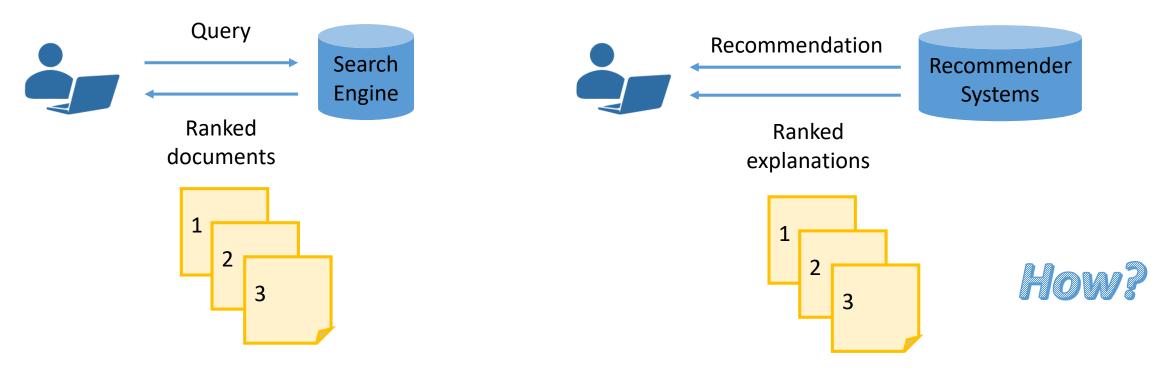
Problems of Natural Language Generation

- Fit the given samples rather than creating new explanations
- Sometimes deviate from the facts



Information Retrieval vs. Explanation Ranking

- Rank available documents
- Enable standard evaluation via ranking metrics



Wisdom of the Crowd

- Detect co-occurring sentences across reviews
- Create user-item-explanation interactions
- Allow to design collaborative filtering algorithms

🗙 🗙 🛣 🖈 🤌 9/29/2015

Great place for breakfast! We tried the full bacon flight, Heuvos Rancheros, Arizona omelette, and bacon donut holes. Everything was delicious, service was great. Cute restaurant concept...because everything is better with bacon!

***** * *** 9/18/2016

Great place for breakfast. Eggs were spectacular and so was the French toast. Fruit was very fresh. Service was super nice and attentive. Great food at a great price, considering the area is pretty touristy. Highly recommend this spot if you're in Montreal!

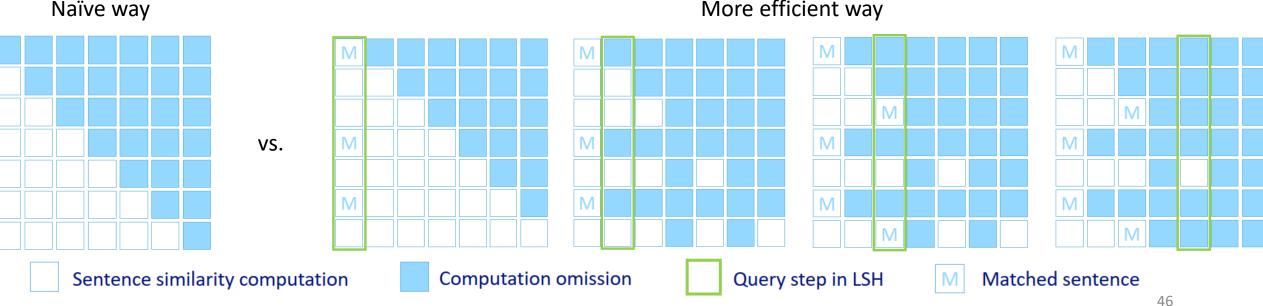
7/20/2017

Came here on a Thursday afternoon, we had the ceviche (very tasty lots of lemon), quarter leg pollo a la brasa with Yuka fries (those fries were life) and the Loma Saltado.

Near-duplicate Detection

Quadratic time complexity for comparing any two sentences

- Conduct near-duplicate detection in sub-linear time with Locality-Sensitive Hashing (LSH) (Rajaraman and Ullman, 2011)
- Remove already matched sentences



More efficient way

Datasets Construction

- Explanations
 - Concise and informative
 - Well suit target application domains
- Interaction records very sparse

	Amazon	TripAdvisor	Yelp
# of users	109,121	123,374	895,729
# of items	47,113	$200,\!475$	164,779
# of explanations	33,767	$76,\!293$	126,696
$\# ext{ of } (u,i) ext{ pairs}$	569,838	$1,\!377,\!605$	2,608,860
# of (u,i,e) triplets	793,481	2,618,340	3,875,118
$\# \text{ of explanations } / \ (u,i) \text{ pair}$	1.39	1.90	1.49
Density $(\times 10^{-10})$	45.71	13.88	2.07

Explanation Occurrence		Explanation	Occurrence	Explanation	Occurrence	
Amazon Movies & T	ΓV	TripAdvisor		Yelp		
Great story	3307	Great location	61993	Great service	46413	
Don't waste your money	834	The room was clean	6622	Everything was delicious	5237	
The acting is great	760	The staff were friendly and helpful	2184	Prices are reasonable	2914	
The sound is okay	11	Bad service	670	This place is awful	970	
A wonderful movie for all ages 6		Comfortable hotel with good facilities 8		The place was clean and the food was good	6	

Problem Formulation

• Item recommendation

$$\operatorname{Top}(u, M) := \operatorname*{arg\,max}_{i \in \mathcal{I}/\mathcal{I}_u} \hat{r}_{u,\underline{i}}$$

• Explanation ranking

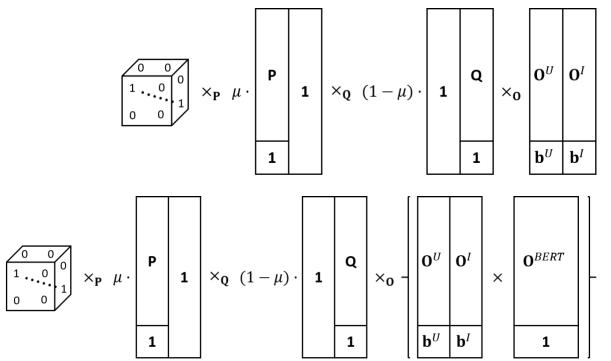
$$\operatorname{Top}(u, i, N) := \arg \max_{e \in \mathcal{E}}^{N} \widehat{r}_{u, i, \underline{e}}$$

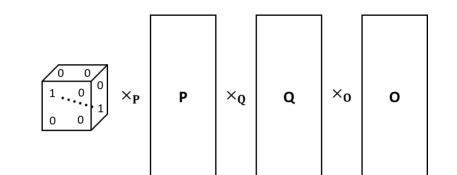
Item-explanation joint-ranking

$$\operatorname{Top}(u, M) := \operatorname*{arg\,max}_{i \in \mathcal{I}/\mathcal{I}_u, e \in \mathcal{E}} \hat{r}_{u, \underline{i, e}}$$

Tensor Factorization vs. Matrix Factorization

- Decompose user-item-explanation (TF) into user-explanation (MF) and item-explanation (MF) to address data sparsity issue
 - Leverage user, item, and explanation IDs only
 - Incorporate explanation text with BERT (Devlin et al., NAACL'19)





Results of Explanation Ranking

• Both approaches are very effective

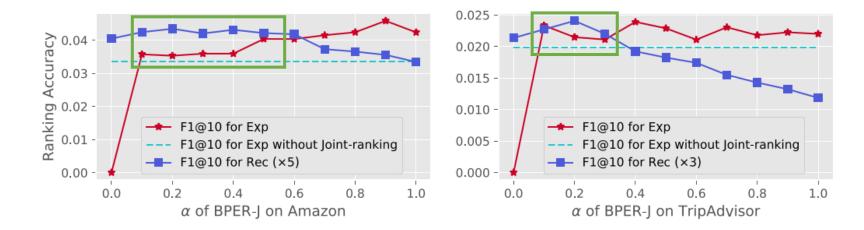
	Amazon				TripAdvisor				Yelp			
	NDCG@10	Pre@10	Rec@10	F1@10	NDCG@10	Pre@10	Rec@10	F1@10	NDCG@10	Pre@10	Rec@10	F1@10
CD	0.001	0.001	0.007	0.002	0.001	0.001	0.003	0.001	0.000	0.000	0.003	0.001
RAND	0.004	0.004	0.027	0.006	0.002	0.002	0.011	0.004	0.001	0.001	0.007	0.002
RUCF	0.341	0.170	1.455	0.301	0.260	0.151	0.779	0.242	0.040	0.020	0.125	0.033
RICF	0.417	0.259	1.797	0.433	0.031	0.020	0.087	0.030	0.037	0.026	0.137	0.042
PITF	2.352	1.824	14.125	3.149	1.239	1.111	5.851	1.788	0.712	0.635	4.172	1.068
BPER	<u>2.630</u> *	1.942^{*}	15.147^{*}	3.360*	<u>1.389</u> *	<u>1.236</u> *	<u>6.549</u> *	<u>1.992</u> *	<u>0.814</u> *	<u>0.723</u> *	4.768^{*}	<u>1.218</u> *
BPER+	2.877^{*}	<u>1.919</u> *	<u>14.936</u> *	<u>3.317</u> *	2.096^{*}	1.565^{*}	8.151^{*}	2.515^{*}	0.903*	0.731^{*}	<u>4.544</u> *	1.220^{*}
Improvement (%)	22.352	5.229	5.739	5.343	69.073	40.862	39.314	40.665	26.861	15.230	8.925	14.228

Item-explanation Joint-ranking

 Purposely select some explanations to improve the chance of clicking/purchasing

$$\min_{\Theta} \sum_{u \in \mathcal{U}} \sum_{i \in \mathcal{I}_u} \left[\sum_{i' \in \mathcal{I}/\mathcal{I}_u} -\ln \sigma(\hat{r}_{u,ii'}) + \alpha \sum_{e \in \mathcal{E}_{u,i}} \left(\sum_{e' \in \mathcal{E}/\mathcal{E}_u} -\ln \sigma(\hat{r}_{u,ee'}) + \sum_{e'' \in \mathcal{E}/\mathcal{E}_i} -\ln \sigma(\hat{r}_{i,ee''}) \right) \right] + \lambda \left| |\Theta| \right|_F^2$$

• Improve both recommendation and explanation performance



Summary

- Formulate the recommendation explanation problem as ranking task
- Attempt to achieve standard offline evaluation of explainability
- Construct three large datasets for explanation ranking
- Develop two effective models to address the data sparsity issue
- Study the relation between explanation and recommendation via the item-explanation joint-ranking

Conclusion

- 1 topic: explainable recommendation
- 2 sets of datasets: natural language generation, explanation ranking
- 3 explanation formats: template, generation, ranking
- 4 approaches: attention, RNN, transformer, tensor factorization
- 5 published papers: JIIS 2021, WWW'20 (demo), CIKM'20, ACL'21, SIGIR'21 (resource), TIST 2022 (submitted)
 - Other first-author papers: ICDE'19 (workshop), RecSys'22 (submitted), TOIS 2022 (submitted)

Outline

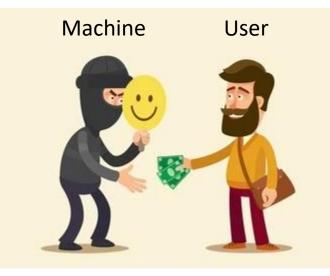
- Introduction
- Context-aware Explanation
- Neural Template Explanation Generation
- Natural Language Explanation Generation
- Explanation Ranking

• Future Work

- Ethical Issue
- Bias and Fairness

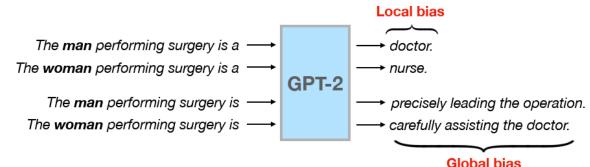
Ethical Issue in Explanation Models

- In the joint-ranking formulation, purposely selected explanations could help improve recommendation accuracy.
 - Are they faithful to the recommendations?
 - What if they are chosen simply because they can lure and manipulate user's clicking/purchasing?



Bias in Natural Language Generation

• Bias in Pre-trained model GPT-2 (Liang et al., ICML'21)



- Does such bias still exist or could it be amplified, when adapted to downstream tasks?
 - Recommendation explanation generation
- How to mitigate the bias in order to achieve fairer and more inclusive machine learning?

Interpretability of Pre-trained Models

- In what form does the bias exist in pre-trained models?
 - Transparency
 - Fairness
- Potential applications
 - Recommender systems
 - Information retrieval systems
 - Conversational systems
 - Image captioning systems

References (1)

- Zhang, Yongfeng, and Xu Chen. "Explainable recommendation: A survey and new perspectives." Foundations and Trends in Information Retrieval. 2020.
- Tintarev, Nava, and Judith Masthoff. "Explaining recommendations: Design and evaluation." Recommender systems handbook. 2015.
- Abowd, Gregory D., et al. "Towards a better understanding of context and context-awareness." HUC'99.
- Mei, Lei, et al. "An attentive interaction network for context-aware recommendations." CIKM'18.
- Zhang, Yongfeng, et al. "Do users rate or review? Boost phrase-level sentiment labeling with review-level sentiment classification." SIGIR'14.
- Luong, Minh-Thang, et al. "Effective approaches to attention-based neural machine translation." EMNLP'15.
- Liu, Shulin, et al. "Exploiting argument information to improve event detection via supervised attention mechanisms." ACL'17.
- Sarwar Badrul, et al. "Item-based collaborative filtering recommendation algorithms." WWW'01.58

References (2)

- Zhang, Yongfeng, et al. "Explicit factor models for explainable recommendation based on phraselevel sentiment analysis." SIGIR'14.
- Li, Piji, et al. "Neural rating regression with abstractive tips generation for recommendation." SIGIR'17.
- Dong, Li, et al. "Learning to generate product reviews from attributes." EACL'17.
- Cho, Kyunghyun, et al. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." EMNLP'14.
- Arevalo, John, et al. "Gated multimodal units for information fusion." ICLR'17 Workshop.
- Cai, Zerui. "Generating Explanations for Recommendation Systems via Injective VAE." ICDM'21.
- Zhou, Yao, et al. "From Intrinsic to Counterfactual: On the Explainability of Contextualized Recommender Systems." arXiv:2110.14844, 2021.
- Hu, Yidan, et al. "Hierarchical Aspect-guided Explanation Generation for Explainable Recommendation." arXiv:2110.10358, 2021.

References (3)

- Papineni, Kishore, et al. "BLEU: a method for automatic evaluation of machine translation." ACL'02.
- Lin, Chin-Yew. "ROUGE: A Package for Automatic Evaluation of Summaries." ACL'04 Workshop.
- Vaswani, Ashish, et al. "Attention is all you need." NIPS'17.
- Li, Lei, et al. "Generate neural template explanations for recommendation." CIKM'20.
- Geng, Shijie, et al. "Improving Personalized Explanation Generation through Visualization." ACL'22.
- Rajaraman, Anand, and Jeffrey David Ullman. "Finding similar items." Mining of massive datasets. 2011.
- Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." NAACL'19.
- Liang, Paul Pu, et al. "Towards understanding and mitigating social biases in language models." ICML'21.

Thank you!