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Abstract

Explainable artificial intelligence (XAI) could unveil the decisions made by AI, help

human understand machine behavior, and further build trust between end users and

AI systems. However, most existing XAI approaches are primarily mathematical,

and also specialized to domain experts. Although they can help researchers under-

stand the underlying working mechanism of AI models, the explanations are hardly

comprehensible to ordinary users. As a user-centric application, recommender sys-

tems interact with and serve a great number of such users. As a consequence, how

to explain recommended products to them, in order to help them make informed

choices and provide better service, becomes a critical and practical problem.

As a primary media of communication, language can be easily understood by

almost everyone. Therefore, natural language explanation for recommendations has

gained increasing attention recently. Despite of that, little work has been done to

provide explanations from the perspective of a user’s changing context, such as com-

panion and destination if the recommendation is a hotel. To fill this research gap,

we have devised a new context-aware recommendation approach that particularly

matches latent features to explicit contextual features for producing context-aware

explanations. But the explanation format in this approach, as with many previous

works, is limited to predefined templates, which could restrict explanation expres-

siveness, and thus may not be able to well explain the specialty of a recommendation.

In an attempt to further enrich explanation expressiveness and quality, we have pro-

posed a neural template generation approach that can learn templates from data. In

order to generate such template-like explanations, an item feature must be specified
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in advance, either automatically or manually. To accommodate situations where

features are unavailable, we have designed a more general method that can generate

natural language explanations with or without features.

The proceeding two methods can generate high-quality explanations, but do not

always guarantee factual correctness, e.g., “four-horned unicorns” as produced by

a well-known pre-trained language model. To cope with this problem, we wonder

whether explanations for a recommendation could be ranked, as if they are web

pages returned by a search engine in accordance with a given query, saving the need

to worry about the content of explanations. To enable such explanation ranking, we

have created benchmark datasets by automatically identifying nearly identical sen-

tences across different user reviews, based on the wisdom of the crowd. In addition,

the ranking formulation makes it possible for standard evaluation of explanations

via ranking-oriented metrics. Based on this, we have studied if purposely select-

ing some explanations could reach certain goals, e.g., improving recommendation

accuracy. This could potentially lead to unfaithful explanations that attempt to

lure users’ clicking and purchasing. Hence, at the end of this thesis, we discuss this

type of unintentionally negative effects as well as other open issues in explainable

recommendations, such as bias and fairness.

We believe that these works conducted in this thesis are non-trivial and mean-

ingful to the community of XAI. They are instantiated on the scenario of explainable

recommendations, but could be generalized to a broader scope of fields in AI, e.g.,

dialogue systems.

Keywords: Explainable Recommendation, Explainable Artificial Intelligence, Rec-

ommender Systems, Context-aware Recommender Systems, Natural Language Gen-

eration, Learning to Rank
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Chapter 1

Introduction

1.1 Motivation

With the ever growing computing capability of computers as well as the unprece-

dented advancement of deep neural networks, artificial intelligence (AI) models are

getting more and more capable of making predictions, such as AlexNet [58] for vi-

sual recognition and BERT [30] for natural language understanding. However, it

is difficult even for their designers to answer why a particular prediction in these

models is made, owing to the sophisticated model structure as compared with tra-

ditional linear models, e.g., linear regression. In fact, unveiling the decisions could

help people better understand model behavior, and further enable trust between hu-

man and machines, especially in high-stake scenario, e.g., health care. Hence, there

emerges a new research direction: explainable AI (XAI) [42], which attempts to

make AI systems interpretable to human being. Although existing XAI approaches,

such as LIME [101] and SHAP [82], could help researchers comprehend AI models’

internal working mechanism, they are very mathematical and somewhat limited to

domain experts. This thesis attempts to address this problem by producing natural

language explanations that are understandable to ordinary people, but its key focus

is on recommender systems, a sub-field of AI.

Recommender systems have been widely deployed on online commercial plat-
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Tasty fresh grapes

No. 1 buffet 
in Pingshan

Fresh seafood 
made on site

7 years on 
Meituan

Plenty of selection, 
good tastes

Figure 1.1: Three examples of recommendation explanation on commercial apps, for

respectively social recommendation (Instagram), food recommendation (Meituan) and

document recommendation (Google Drive). For privacy protection, some areas are

shaded.

forms, ranging from e-commerce, video-sharing to social media, e.g., Amazon1,

Youtube2 and Instagram3, because they can tackle the information overload prob-

lem by returning personalized products or information to users. Meanwhile, they

can also benefit service providers, e.g., increasing their revenue. Over the years,

there emerges a variety of recommendation algorithms, including collaborative fil-

tering (CF) [103, 100], matrix factorization (MF) [88, 57] and deep neural networks

[45, 129]. Though most of them have been demonstrated effective, it is difficult for

the latter two types of method to illustrate why a product is recommended, since

they represent users and items as latent factors/vectors that cannot directly reflect

users’ preferences towards explicit item features.

Recently, explainable recommendation has drawn increasing attention from both

academia [111, 131] and industry [126, 127], because it has been shown that pro-

1https://www.amazon.com
2https://www.youtube.com
3https://www.instagram.com
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Figure 1.2: Three user reviews for different movies from Amazon (Movies & TV

category). Sentences of explanation purpose are underlined, while features that

can be used for explanation are in rectangles.

viding appropriate explanations can help users make better and/or faster decisions,

increase the system’s ease of use and enjoyment, and gain user trust in the system

[111, 131]. In fact, explanation is as important as recommendation itself, because

there is usually no absolute “right” or “wrong” in terms of which item(s) to recom-

mend. Instead, multiple items may all be of interest to a user, and it all depends

on how they are explained to the user. Among various explanation styles (e.g.,

images [22, 38] and item neighbors [71, 93]), natural language explanation is more

preferred by commercial platforms (see Fig. 1.1), owing to its advantage in com-

municating rich information. However, there are three important issues yet to be

addressed in explainable recommendation research: benchmark datasets, effec-

tive approaches and quantitative evaluation.

In terms of data, user reviews have been widely utilized for providing natural

language explanations [133, 43, 13, 81, 14, 36, 116, 119, 24, 16, 26], because they

contain users’ real feedback towards items, and thus are an ideal proxy of expla-

nation. However, simply adopting reviews [14, 34, 81, 109] or their first sentences

[26] as explanations is less appropriate, because some sentences are less suitable for

explanation purpose (see the first review’s first sentence in Fig. 1.2). We argue that

a more appropriate way is to identify some item features (e.g., “acting”) or sentences

(e.g., “great story and acting”) that can serve as explanations (see the highlights in

3



Fig. 1.2). With this in mind, we create two types of benchmark datasets respectively

for natural language explanation generation and explanation ranking.

In terms of methodology, there are several critical problems that are mostly

ignored by existing explainable recommendation approaches. We briefly summarize

them below, and discuss and address them with more details in the corresponding

chapters.

• Explanations produced by existing approaches are mostly static, and therefore

hardly adaptable to a user’s changing contexts, such as location and time,

which are quite important particularly when a user is actively looking for

service-oriented recommendation, e.g., restaurant.

• The template based explanation style as adopted in most existing approaches

could not always well explain a recommendation, since its “backbone” is fixed

permanently and may lose flexibility, e.g., “You might be interested in [feature],

on which this product performs well” [133, 36, 110].

• The semantic gap between IDs (indispensable in recommender systems) and

words makes it difficult to unleash the language modeling power of the well-

known Transformer model [114] for explanation generation, as well as other

relevant natural language generation tasks, such as review summarization and

dialogue systems.

• The potential impact of explanations to recommendations is rarely studied

in existing approaches, because their explanations are often side outputs of

recommendation models. This could also be attributed to the lack of standard

evaluation of explainability, since the explanations vary from model to model,

i.e., model-dependent.

Evaluation of explanations in existing works can be generally classified into four

categories, including case study, user study, online evaluation and offline evaluation

[131]. In most works, case study is adopted to show how the example explanations

are correlated with recommendations. These examples may look intuitive, but they

4



are less representative to reflect the overall quality of the explanations. Results

of user study [5, 39] are more plausible, but it can be expensive and is usually

evaluated in simulated environments which may not always reflect real users’ actual

perception. Although this is not a problem in online evaluation, it is difficult to

implement as it relies on the collaboration with industrial firms, which may explain

why only few works [133, 126, 84] conducted online evaluation. Consequently, one

may wonder whether it is possible to evaluate the explainability using offline metrics.

However, as far as we know, there is no standard metrics that are well recognized

by the community. Although BLEU [91] in machine translation and ROUGE [75] in

text summarization have been widely adopted to evaluate text quality for natural

language generation, text quality is not equal to explainability [16]. To cope with

the problem, we come up with new explainability metrics that are complementary

to text quality with a particular focus on item features. In addition, we propose a

learning to rank formulation [79] for recommendation explanations, so as to achieve

standard offline evaluation.

1.2 Outline

This thesis introduces three different ways to implement natural language expla-

nation for recommendations: template-based context-aware explanation, generated

textual explanation, and ranked textual explanation. The technical details are pre-

sented in four separate chapters.

In Chapter 2, we first go through an exhaustive amount of related works on ex-

plainable recommendation, context-aware recommender systems, natural language

generation, and learning to rank. In the meantime, we discuss their shortcomings

and how this thesis is motivated by them.

In Chapter 3, we present our explanation approach for context-aware recommen-

dations, which we dub CAESAR, standing for Context-Aware Explanation based on

Supervised Attention for Recommendations. To realize such explanation, we also

come up with a feature mining approach to discover high-quality contextual features
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from user reviews. This chapter is based on the work published at JIIS [61].

In Chapter 4, we develop a NEural TEmplate (NETE) explanation generation

approach that is able generate template-shaped explanations. Besides the model,

we provide public datasets for natural language explanation generation, and offer

the way to create them. In addition, we propose four novel metrics to evaluate the

explainability of generated explanations from the perspective of item features and

sentence diversity. This chapter is based on the work published at WWW’20 (demo)

[62] and CIKM’20 [64].

In Chapter 5, we describe a PErsonalized Transformer for Explainable Recom-

mendation (PETER), where we design an elegant task to address the problem that

vanilla Transformer, though being demonstrated with strong language modeling ca-

pability, fails to make use of user and item IDs (which are essential in recommender

systems) for natural language generation. This chapter is based on the work pub-

lished at ACL’21 [67].

In Chapter 6, we argue that explanations could be ranked just like documents re-

turned by search engines, which would enable standard evaluation of explainability.

To this end, we present three benchmark datasets for EXplanaTion RAnking (EX-

TRA) created by conducting near-duplicate detection on user reviews. We address

the inherent sparsity issue in the user-item-explanation interaction data, by treating

the ternary relationship as two groups of binary relationships. Further, we extend

traditional item ranking to an item-explanation joint-ranking formalization to show

that purposely selecting some particular explanations could lead to improved rec-

ommendation accuracy. Part of the work in this chapter was published at SIGIR’21

(resource) [65], and the remaining part [66] is under review at the time of thesis

submission.

In Chapter 7, we conclude this thesis, and discuss open problems in explainable

recommendation research, such as bias and fairness.
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Natural Language Generation

This movie is top <eos>

<bos>User ID Item ID

Input IDs Output Sequence

notch

This movie is top notch

Language Model (e.g., Pre-trained GPT-2, Transformer, GRU or LSTM)

Figure 1.3: Overview of recommender systems-based natural language generation.

In the case of recommendation explanation generation, the model is instructed to

generate a word sequence for explaining why an item is recommended to the user.

1.3 Contributions

The main contributions of this thesis are listed below:

• We design a context-aware recommendation approach that is able to produce

context-aware explanation, which is important particularly in mobile environ-

ment, but mostly ignored by existing works. As shown in our human evalua-

tion, the context-aware explanations are perceived more helpful to users than

context-unaware explanations.

• We present a neural template explanation generation approach, which bridges

the merits of both template-based and natural language generation-based ap-

proaches for both explanation expressiveness and quality. We release our

datasets, as well as the way to construct them so that other researchers can

create their own datasets. For evaluation, we design four explainability metrics

that emphasize more item features in generated explanations, as a complement

to existing text quality measures.

• We propose a personalized Transformer that can make recommendation and

generate natural language explanation simultaneously by bridging the gap be-

tween IDs (important identifiers in recommender systems) and words. On top
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of the proceeding two works, we create a small ecosystem4 to facilitate the

development of recommender systems-based natural language generation (see

Fig. 1.3). It consists of implementation of typical language models (including

pre-trained model GPT-2 [95, 68], Transformer [114, 67], GRU [27, 70] and

LSTM [47, 31]), evaluation metrics and public datasets.

• We formulate the explanation problem as a ranking-oriented task, and con-

struct three benchmark datasets which consist of user-item-explanation inter-

actions, with an attempt to achieve standard evaluation of explainability for

explainable recommendation via well-known ranking metrics, such as NDCG,

precision and recall. With the evaluation and data, we propose an item-

explanation joint-ranking framework that can reach our designed goal, i.e.,

improving the performance of both recommendation and explanation, as evi-

denced by our experimental results.

4Available at https://github.com/lileipisces/NLG4RS
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Chapter 2

Literature Survey

There are four lines of research closely related to this thesis: explainable recommen-

dation, context-aware recommendation, natural language generation and learning

to rank. In this chapter, we present a literature survey regarding the four branches

of research work.

2.1 Explainable Recommendation

There are two major directions on explainable recommendation research [111, 131]:

human-computer interaction and machine learning. The former [37, 19, 59, 20]

investigates how people perceive different styles of explanation, while the latter

provides explanations by designing new explainable recommendation algorithms, to

which this thesis is more related. In these works, there is a variety of explanation

styles to recommendations, including visual highlights [22, 48], textual highlights

[105, 80], item features [43, 117], generated images [38], knowledge graph paths

[3, 122, 35, 123, 118], reasoning rules [107, 17, 139], pre-defined templates [133,

36, 116, 110], automatically generated text [90, 26, 28, 81, 16] and retrieved text

[24, 119, 14, 13], etc. The works conducted in this thesis are more relevant to the

last three.

To produce template-based explanations, a number of methods has been pro-

posed to identify keywords to be filled in the template, such as matrix factorization

9



[133], tensor factorization [116], and attention mechanism [36]. Our context-aware

explanation approach lies in the last category because it makes use of attention

mechanism, but it differs from related methods in that it produces context-aware

explanations. There are few related works [7, 104] that take context into consider-

ation for explanation purpose. However, in [7] only location based explanation is

provided, so the model is restricted to one type of context, while ours can accommo-

date various types of context into explanation. The second work [104] is limited to

item-level context-aware explanation, e.g., “recommend for use as [couples]”, so the

explanation cannot reason in terms of what features the recommended item would

be suitable for the user’s current contexts.

However, it will involve costly human efforts and domain knowledge to design

templates. Moreover, since they are predefined and fixed, the diversity and flexibil-

ity of explanations in template-based approaches may be hindered. This motivates

the development of natural language generation methods. Despite the popularity,

researchers have pointed out that they tend to generate universal and safe sentences,

which carry little meaning and thus may not be very useful to users [89, 128, 135].

With an attempt to improve the expressiveness of generated text, researchers have

introduced keywords [89, 128] or a group of attributes [135] as input to their models.

Meanwhile, previous methods usually adopt a user review [120, 112, 81, 109], its first

sentence [26], or the review title [70] as the training data, which may not always be

relevant to the recommended item. As a comparison, in our neural template gen-

eration approach, the data are review sentences that contain at least one concrete

item feature. This makes the generated explanations more informative and relevant

to the items, and thus could help users better understand the recommendations.

Besides data, previous works mostly rely on recurrent neural networks (RNN), leav-

ing the potentially more effective Transformer under-explored, which motivates our

work of personalized Transformer. More technical details are given in the following

section.

Besides automatically generating text, retrieving available text is also a popular
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way to explain recommendations. For example, some retrieval-based methods [14,

13] present to users a few reviews as selected from the target item’s review collection.

As a user review could be very long and may contain noisy information that is not

really useful [46, 119], some studies have attempted to select sentences instead of

the whole review as explanations [119, 24]. But explanations in these works are

merely side outputs of the recommendation models. As a result, none of these works

measured the explanation quality based on benchmark metrics. In comparison, our

explanation ranking approach formulates the explanation task as a learning to rank

[79] problem, which enables standard offline evaluation via ranking-oriented metrics.

Regarding explanation evaluation, there are some works [26, 90] that regard

text similarity metrics (i.e., BLEU [91] in machine translation and ROUGE [75]

in text summarization) as explainability, when generating textual explanations for

recommendations. The evaluation issue is still under debate, since text similarity

does not equal to explainability [16]. For example, when the ground-truth is “sushi

is good”, two generated explanations “ramen is good” and “sushi is delicious” gain

the same score on the two metrics. However, from the perspective of explainability,

the latter is obviously more related to the ground-truth, as they both refer to the

same feature “sushi”, but the metrics fail to reflect this issue. This is why we propose

four metrics that particularly evaluate item features and sentence diversity in our

neural template generation approach, and also come up with the explanation ranking

formulation that may enable standard evaluation of explanations.

2.2 Context-aware Recommendation

Context-aware recommendation algorithms can be broadly classified into three cat-

egories according to the phase when contextual information is incorporated: contex-

tual pre-filtering, contextual post-filtering and contextual modeling [2]. Contextual

pre-filtering approaches are able to make use of traditional recommendation algo-

rithms, e.g., matrix factorization (MF) [88], where contexts play the role of data

filtering, e.g., selecting rating data for one certain context. However, this approach
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suffers from severe data sparsity problem, as the data may become sparse after filter-

ing. Existing recommendation algorithms can also be adopted to contextual post-

filtering, in which a given context is used to filter out irrelevant recommendations

or adjust the recommendation list. Recently, more researchers start to investigate

contextual modeling techniques. We classify these works into two groups. The first

group of work has been engaged in leveraging contextual features for recommen-

dation [15, 60], for which the recommendation process normally contains several

steps, including contextual feature extraction, sentiment orientation detection, re-

view score calculation, and item score computation. However, the whole process

may involve costly human labeling efforts or require domain knowledge. In compar-

ison, our context-aware recommendation approach is a general neural network that

models contextual features without human efforts. The other difference is that this

model can utilize contextual features for both recommendation and explanation,

while the related methods mainly leverage contextual features for recommendation

only.

The second group of work does not consider contextual features, but models

contexts in various ways. For example, in [51], users, items, and contexts are all

represented as factors in a user-item-context tensor, which is then factorized by

Tucker decomposition [53]. In [77], tensors are also applied, but are used to derive

contextual operating matrices and context-specific vectors for rating prediction. In

[6], matrix factorization [88] is extended to incorporate the influence of contexts as

bias parameters, which could be related to items or their categories. In factorization

machines (FM) [97] based methods [124, 44, 125], users, items, and contexts are

equally treated as features for sparse data prediction. Specifically, [124] leverages

attention mechanism to distinguish the importance of different feature interactions,

[44] applies neural networks to learn non-linear and high-order feature interactions,

and [125] performs 3D convolutions on an interaction cube to capture high-order

interaction signals. More recent methods have attempted to characterize the relation

between users/items and contexts in an attentive manner to distinguish the impact of
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different contexts on users’ preference [85, 63]. The major difference between [85] and

[63] is that the former adopts vanilla attention mechanism, while the latter utilizes

co-attention. Although these methods achieve certain accuracy improvement, they

are hardly explainable because their features are mostly in latent representations

(e.g., vectors or scalars), while our proposed context-aware approach can leverage

explicit contextual features for explanation purpose.

2.3 Natural Language Generation

In the field of natural language processing, the encoder-decoder framework has been

widely deployed in many applications, such as machine translation [27], conversa-

tional systems [89, 128], and text summarization [11]. For the application of recom-

mender systems-based natural language generation, user and item IDs are usually

mandatory. Previous approaches typically adopt multi-layer perceptron (MLP) as

the encoder to encode the IDs into a context vector, from which RNN, such as long

short-term memory (LSTM) [47] and gated recurrent units (GRU) [27], can decode

a word sequence. This strategy can be found in many applications, such as review

generation [31, 120, 112], tip generation [70, 69] and explanation generation [26, 16].

Moreover, since the generation process of natural language generation methods may

not be easy to control [121], some works have leveraged attention mechanism [83]

or copy mechanism [41] to force the models to include some specific words. How-

ever, these techniques cannot guarantee which word to be included. In comparison,

our neural template generation approach is able to place the given feature in the

generated explanation, which achieves certain degree of controllability.

These techniques are developed for RNN-based approaches, so they may not be

applicable to the more recent Transformer [114] that relies entirely on self-attention.

This well-known model is first brought to the domain of machine translation with

the architecture of encoder-decoder. Later works [76, 30] show that it remains

effective, even when the encoder or the decoder is removed, reducing nearly half of

the parameters. Under the paradigm of pre-training plus fine-tuning, Transformer’s

13



effectiveness has been confirmed on a wide range of tasks, including both natural

language understanding and generation [94, 30, 32]. Particularly, it is able to perform

novel tasks, e.g., arithmetic, after scaling up both the model and the training data

[95, 10]. However, it may not be friendly to researchers who do not possess large

amounts of computing resources. Instead, our personalized Transformer explores

small unpretrained models, as they are computationally cheaper and more flexible

when being adapted to new applications, e.g., dialogue systems. Probably because

a proper solution to deal with heterogeneous inputs (i.e., IDs and words) is yet to

be found, previous works with Transformer for natural language generation replace

IDs with text segments, such as persona attributes [137], movie titles [138] and item

features [90], which are in the same semantic space as the word sequence to be

generated. In comparison, our solution for the personalized Transformer is to design

an effective task that can give the IDs linguistic meanings, thus connecting IDs with

words.

2.4 Learning to Rank

The application of learning to rank [79] can be found in many other domains. For

instance, [115, 49] attempt to explain entity relationship on knowledge graphs via

ranking. The major difference from our explanation ranking for recommendations is

that they heavily rely on the semantic features of explanations, either constructed

manually [115] or extracted automatically [49], while one of our ranking models

works well when leveraging only the relation of explanations to users and items,

without considering such features.

Our proposed explanation ranking models are experimented on textual datasets,

but it can be applied to a broad spectrum of other explanation styles, e.g., images.

Concretely, on each dataset there is a pool of candidate explanations to be selected

for each user-item pair. A recent online experiment conducted on Microsoft Office

3651 [126] shows that this type of globally shared explanations is indeed helpful

1https://www.office.com
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to users. The main focus of this work is to study how users perceive explanations,

which is different from ours that aims to design effective models to rank explanations.

Despite of that, their research findings motivate us to provide better explanations

that could lead to improved recommendations.

In more details, in our ranking formulation we model the user-item-explanation

relations for both item and explanation ranking. There is a previous work [43] that

similarly considers user-item-aspect relations as a tripartite graph, where aspects

are extracted from user reviews. Another branch of related work is tag recommen-

dation for folksonomy [99, 50], where tags are ranked for each given user-item pair.

First, our data are different from theirs, since a single tag/aspect when used as an

explanation may not be able to clearly explain an item’s specialty, e.g., a single

word “food” cannot well describe how good a restaurant’s food tastes. Second, in

terms of problem setting, our work is different from the preceding two, because they

solely rank either items/aspects [43] or tags [99, 50], while besides that we also rank

item-explanation pairs as a whole in our proposed joint-ranking framework. An-

other difference is that we study how semantic features of explanations could help

enhance the performance of explanation ranking, while none of them did so.
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Chapter 3

Context-aware Explanation

3.1 Background

Context-aware recommender systems (CARS) [2] have been extensively studied

[85, 63, 44, 124, 15, 60], because they can adapt to the needs of users in differ-

ent contextual scenarios, and therefore provide more accurate recommendations.

Meanwhile, explainable recommendation, which aims to answer why a particular

item is recommended, has drawn increasing attention in recent years [133, 43, 13,

81, 14, 117, 116, 119, 36, 24, 118, 64, 62]. However, few recommendation models

have linked the two branches of work for providing context-aware explanation. For

instance, one popularly used explanation “You might be interested in [feature], on

which this product performs well” [133, 110, 36] does not reflect the recommenda-

tion’s suitability for users’ changing needs under different contexts, which however

is especially important when users look for a service-oriented product, e.g., hotel

and restaurant.

To produce informative explanations which fit user context (that refers to “any

information that can be used to characterize the situation of an entity” [1], such

as companion and destination), we propose a novel neural model, called CAESAR

standing for Context-Aware Explanation based on Supervised Attention for Rec-

ommendations. It is able to select the user’s most concerned context as well as

its most relevant features to produce context-aware feature-level explanation for
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Figure 3.1: A hotel review example from TripAdvisor, where “contexts” are

highlighted with blue lines and “contextual features” (i.e., features relevant

to the context) with red lines. To protect privacy, the user name is shaded.

the recommendation, i.e., “This product is recommended to you, because its [fea-

tures] are suitable for your current [context].” The explanation template contains

two slots to be filled in by selected features and context, which to some extent is

consistent with the aforementioned feature-based explainable recommendation ap-

proaches [133, 110, 36]. With these templates, researchers can focus on the design

of explanation models.

To produce such context-aware explanation, we need to resolve several challeng-

ing issues. The first issue is how to mine high-quality contextual features from

user reviews, like the ones highlighted with red lines in Fig. 3.1. For example,

pre-defining some contextual seed words and searching for their synonyms [15] may

limit the diversity of the extracted features. The second challenging issue is about

how to find relevant features for different contexts, because users may care about

different features under different situations. For instance, users having a business

trip may choose a hotel that provides facilities such as “Wi-Fi” and “meeting room”

(see Fig. 3.1), while couples may prefer romantic dinner. Third, how to find a user’s

most concerned context is also challenging, since not all of the contexts might be

equally important to her/him. For example, still in Fig. 3.1, the user only cared

about features related to trip goal (“business”) and location (“Hong Kong”), but not
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Figure 3.2: Context-related concepts and corresponding examples.

to time. As for related work on CARS, though the popularly applied approach

based on tensor factorization [51, 116] can unify users, items, and contexts into one

model, it is incapable of modeling contextual features, since that would increase the

dimension of tensor and make it highly sparse. Last but not least, it is essential to

guarantee the selected features to match to the user’s own preference so that the

explanation can be personalized.

In this chapter, we present CAESAR to address these limitations. To the best

of our knowledge, this is the first work that has explicitly considered different types

of user contexts (e.g., companion and destination) to generate feature-level expla-

nation, as well as improving the recommendation accuracy at the same time.

The remaining content of this chapter is organized as follows. We first formulate

our problem in Section 3.2, and in detail present the proposed method in Sections

3.3 and 3.4. Then, the experiments and results are discussed in Sections 3.5 and

3.6. We make the final summary in Section 3.7.

3.2 Problem Formulation

Before stating the research problem, we introduce some important concepts that

will be used in the following content. As shown in Fig. 3.2, contexts can be

grouped into different categories that we call contextual categories, such as com-

panion, destination, and month. We denote them as C1, C2, ..., Cm, where m is the

total number of contextual categories. Each contextual category consists of multiple

values, e.g., family and couples for companion. Since a user-item pair normally has

one unique value for a contextual category, this contextual variable for Cj (where
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j ∈ {1, 2, ...,m}) is denoted as cj for brevity. Following [85], we name the combina-

tion of contextual variables (c1, c2, ..., cm) for a user-item pair as contextual combi-

nation c. In this chapter, we interchangeably call c contexts. As illustrated in Fig.

3.2, there are some features that are highly relevant to a contextual variable, e.g.,

“meeting rooms” and “conference” to business. We term such features contextual

features and denote their collection for a contextual variable c from Cj as F cj .

The goal of our recommendation task is to predict a rating r̂u,i,c, given a user u, an

item i, and the corresponding contexts c. Moreover, our proposed model will select

contextual features relevant to the user’s most concerned context for explanation. At

the training stage, the training data consist of users, items, contexts, and contextual

features. The key notations and concepts used in this chapter are presented in Table

3.1. We use pu ∈ Rd to represent the embedding of user u ∈ U , and qi ∈ Rd for

the embedding of item i ∈ I. For the j-th context in contextual combination c, i.e.,

cj, we denote its embedding as kj ∈ Rd, and the embedding matrix of contextual

features related to this context Hj ∈ Rd×n, where d and n respectively represent the

dimension of embedding and the number of contextual features.

In Section 3.3, we first introduce our approach to mine contextual features from

user reviews, and then describe our proposed model in Section 3.4 that is developed

to achieve both context-aware recommendation and explanation.

3.3 Contextual Feature Mining

Since some features may not be relevant to certain contextual variables (e.g., fea-

ture “hotel” may be too general to context business), it is necessary to find context-

relevant features of each contextual variable for producing better explanation. Our

approach for mining those features is comprised of two major steps: extracting fea-

tures from user reviews, and measuring the relevance between features and contexts.

For the former, a sentiment analysis toolkit1 [134] is applied to accomplish it. How-

ever, the second step is challenging, as it is not intuitive to assign each extracted

1https://github.com/evison/Sentires
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Table 3.1: Key notations and concepts.

Symbol Description

T training set

U set of users

I set of items

Cj set of values for the j-th contextual category

F cj set of features for context c in category j

pu embedding of user u

qi embedding of item i

c contextual combination

kj embedding of the j-th context in c

Hj embedding matrix of features for the j-th context in c

sj distribution of features for the j-th context in c

W weight matrix

w,b weight vector

w, b weight scalar

m number of contextual category

n number of contextual feature

d dimension of embedding

ru,i,c rating assigned by user u on item i under contexts c

r̂u,i,c predicted rating

σ(·) activation function
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feature an appropriate weight to indicate its relevance to a particular context. To

address this challenge, we have revised the weight assigning strategy originally pro-

posed in [60] to identify high-quality contextual features. Specifically, we utilize

point-wise mutual information (PMI), instead of raw occurrence frequency in [60],

in order to distinguish the relative importance weights of a feature with respect

to different contexts. We then compute the weight of a feature by comparing its

relevance degrees to different contexts in the same contextual category, which is

also different from [60] as it just computes the weight for all contexts regardless

of their categories. For example, they treat family and December equally without

considering their respective categories companion and month.

To be more concrete, we first extract a list of (feature, opinion, sentiment polar-

ity) entries from textual reviews via the sentiment analysis tool [134], e.g., (harbor

view, spectacular, +1) from the sentence “a spectacular HK harbor view available all

day”. We then filter out infrequently occurring features, as well as negative features

because their occurrence is much less than that of positive features, which may cause

data imbalance issue if we integrate them. Next, we aim at discovering the most

relevant features to each context associated with the target review by analyzing the

relation between the features and the context. To this end, we first count a feature

f ’s overall occurrence frequency freqcf in the user reviews pertaining to context c

in the contextual category Cj, where j ∈ {1, 2, ...,m}. To account for the relative

importance of a feature to different contexts, we compute the PMI value:

PMIcf =
freqcf

freqf · freqc
(3.3.1)

where freqf denotes the total frequency of feature f in all the user reviews and

freqc indicates the total number of features in the user reviews pertinent to context

c.

With the PMI values, we calculate the mean value for each feature f over all

contexts in Cj as avgf , based on which we estimate the statistical error of feature

f for context c as errcf , whose absolute value can be seen as the relevance degree
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Figure 3.3: Overview of our proposed model CAESAR, where pu, qi, k1, k2, H1,

H2, and Su,i,c are input embeddings, and r̂u,i,c is the final predicted rating.

Su,i,c corresponds to the ground-truth distribution of context-aware features in

the user review.

between the feature and the context:

avgf =
1

|Cj|
∑
c∈Cj

PMIcf

errcf = PMIcf − avgf

wcf =
∣∣errcf ∣∣

(3.3.2)

The larger the weight wcf is, the less general the feature f is to the context c,

indicating it is more relevant to this context. For each context, we rank all the

features according to their weights. Moreover, the ranking positions of features that

have the same weight for a certain context are adjusted in accordance with their

appearing frequencies under this context.

Lastly, for each context c in the contextual category Cj, we select top n ranked

features to construct the contextual feature set F cj .

3.4 Model Description

The results of the previous section are leveraged to generate context-aware recom-

mendation and explanation. In the following, we introduce our proposed model
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Figure 3.4: Interaction module.

CAESAR (standing for Context-Aware Explanation based on Supervised Attention

for Recommendations), where we design a two-level attention mechanism in order

to discriminate the importance of different contexts as well as their associated fea-

tures. In addition, we propose a supervised attention mechanism to align contextual

features with those in the target review, so that the selected features for explanation

can match to the user’s preference.

3.4.1 Model Basics

As shown in Fig. 3.3, the interaction module and the attention module are integrated

into our model, so we first briefly introduce these two basic building blocks.

Interaction Module. We propose to employ multi-layer perceptron [85, 63] to

learn the non-linear interaction between two entities among users, items, and con-

texts, since it has been demonstrated with better representation ability [45] than

linear interaction such as matrix factorization [88]. For the convenience of later

usage, we write this module as:

va→b = Inter(va,vb) (3.4.3)

where va ∈ Rd and vb ∈ Rd are input vectors, Inter(·) denotes the function of

interaction module, and va→b ∈ Rd is the output vector. As shown in Fig. 3.4,

we first map the embeddings of two entities va and vb to a shared hidden space

via a bilinear layer. Then the resultant vector is fed into a stack of fully connected
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layers to enable non-linear transformations. Finally, the output vector from the last

hidden layer is transformed into va→b, so that it has the same dimension as the input

vectors. More specifically, the interaction module in our model is formally defined

as:
z0 = σ(W0[va,vb] + b0)

z1 = σ(W1z0 + b1)

. . . . . .

zL = σ(WLzL−1 + bL)

va→b = WL+1zL + bL+1

(3.4.4)

where [·, ·] denotes the concatenation of vectors, σ(·) is a non-linear activation func-

tion, Wx ∈ R2d×2d and bx ∈ R2d are respectively the weight matrix and bias vector

in the hidden layers, and WL+1 ∈ Rd×2d and bL+1 ∈ Rd correspond to the weight

and bias in the final linear layer.

Attention Module. The attention mechanism [105, 14, 18, 80, 124] is employed

on contexts and contextual features, because users under different contextual situ-

ations may have different needs, and different contexts may have different impacts.

We formally denote the attention module as:

v,α = Attn(V,va,vb) (3.4.5)

where va ∈ Rd and vb ∈ Rd are the input vectors, V ∈ Rd×z represents the input

matrix, Attn(·) denotes the function of attention module, v ∈ Rd is the aggregated

output vector, and α ∈ Rz is the output vector consisting of attention scores. As

illustrated in Fig. 3.5, each object vl ∈ V is fed into the attention network together

with input vectors va and vb for computing a weight score. Formally, we define the

attention network as:

α∗l = w>σ(W[vl,va,vb] + b) + b

αl =
exp (α∗l )∑z
l′=1 exp (α∗l′)

(3.4.6)

where W ∈ R3d×3d, b ∈ R3d, w ∈ R3d, and b ∈ R are model parameters. α∗ is

normalized through the softmax function, resulting in the final attention vector α,
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Figure 3.5: Attention module.

with which we calculate the weighted sum v =
∑z

l′=1 αl′vl′ over the input embedding

matrix V.

3.4.2 Personalized Recommendation

As shown in Fig. 3.3, given a user u, an item i, and the contextual combination c,

we first retrieve their corresponding embeddings pu, qi, and kj for each context cj in

c, where j ∈ {1, 2, ...,m}. To model the effects of contexts on a user, we employ the

interaction module on the embeddings of user u and each context cj via Eq. (3.4.3),

pu→j = Inter(pu,kj). In a similar way, we obtain the item’s contextual embedding

qi→j.

As the contextual embeddings pu→j and qi→j are latent, we propose to character-

ize users’ preferences over contextual features. For this purpose, with the contextual

embeddings pu→j and qi→j, and the corresponding embedding matrix of contextual

features Hj for context cj, we obtain the overall assessment of these features hj

and their attention scores αj using Eq. (3.4.5), i.e., hj,αj = Attn(Hj,pu→j,qi→j).

Notice that we apply different attention modules to contexts in c, and call them

feature-level attention as a whole. In this way, different contextual features’ impor-

tance to a certain context can be individually learned.

To further distinguish the importance of different contexts to the target user

and item, we represent the embeddings from feature-level attention component as a
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matrix:

H =


| | |

h1 . . . hj . . . hm

| | |


where H ∈ Rd×m and hj ∈ Rd. Then, the influences of different contexts can

be modeled via another attention module, i.e., ede,β = Attn(H,pu,qi), which we

call context-level attention. Here ede is context-dependent preference because it is

inferred from contextual data including contexts and contextual features. On the

other hand, there may exist another type of preference, i.e., context-independent

preference, which remains stable regardless of the context [15]. To model it, we em-

ploy another interaction module without contexts involved, i.e., ein = Inter(pu,qi).

We finally pass both types of preference into a fusion layer, by which the rating

can be predicted as:

r̂u,i,c = w>r [ein, ede] + br (3.4.7)

where wr ∈ R2d and br ∈ R. For the rating prediction task, we adopt the mean

squared error loss function:

Lr =
∑

(u,i,c)∈T

(ru,i,c − r̂u,i,c)2 (3.4.8)

where T is the training set and ru,i,c denotes the ground-truth rating that the user

u assigned to item i under contexts c.

3.4.3 Explanation Generation

The embedding matrixHj leverages contextual features in the feature-level attention

component, but they are latent because there is no direct connection with explicit

features. To build such connection for generating explanation, we force the scores

resulting from feature-level attention to be the same as the ground-truth frequencies

of contextual features in the target review.

Concretely, from the target review we can have the occurrence frequency freqcjf

of each feature f that appears in context cj’s feature collection F cjj (from Section
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3.3). We can then obtain the feature distribution vector sj (the matrix form is Su,i,c

as shown in Fig. 3.3), in which each element corresponds to a contextual feature’s

normalized frequency:

sfj = freq
cj
f /

∑
f ′∈F

cj
j

freq
cj
f ′ (3.4.9)

To align the attention vector αj with the distribution vector sj, we apply the mean

squared error loss function:

Le =
∑

(u,i,c)∈T

m∑
j=1

n∑
k=1

(skj − αkj )2 (3.4.10)

where m is the total number of contexts in c and n denotes the number of contex-

tual features. As the attention scores are learned from explicit contextual features

through the manner of supervised learning, we name it supervised attention [78].

To explain the recommendation, we select a context with the highest score from

context-level attention and its most relevant contextual features from feature-level

attention to fill in the template: “This product is recommended to you, because its

[features] are suitable for your current [context].”

3.4.4 Multi-task Learning

At last, we integrate the rating prediction task and the context-aware explanation

task into a unified multi-task learning framework, for which the objective function

is:

J = min
Θ

(λrLr + λeLe + λn||Θ||2F ) (3.4.11)

where Θ is the set of model parameters, and λr, λe and λn are regularization coeffi-

cients for different tasks.

3.5 Experimental Setup

In this section, we present our experimental setup, including dataset description,

evaluation metrics, baseline models and implementation details. We also study

some important hyper-parameters of our model CAESAR.
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Table 3.2: Statistics of our datasets.

TripAdvisor Yelp

# of users 9,765 27,147

# of items 6,280 20,266

# of reviews 320,023 1,293,247

Avg. # of reviews / user 32.77 47.64

Avg. # of reviews / item 50.96 63.81

# of contextual variables in companion 6 -

# of contextual variables in day of a week - 7

# of contextual variables in month 13 12

# of contextual variables in destination 415 242

3.5.1 Datasets

In our experiment, we used two large-scale datasets from two typical service do-

mains, i.e., hotel and restaurant, to evaluate our proposed model. For hotel domain,

we constructed the dataset with reviews collected from a popular travel website

TripAdvisor2. Specifically, we crawled all the user reviews to every hotel located

in Hong Kong from this website, as well as those users’ historical reviews in other

cities. After removing non-English reviews, we have in total 2,118,108 interaction

records. The other dataset is from Yelp Challenge 20193, which contains 6,685,900

restaurant reviews. Since the two datasets are very large and cold start problem is

not our focus, we further processed them by recursively removing users and items

with less than 20 interactions, which results in two subsets (see Table 3.2 for their

descriptive characteristics).

Each review record in our datasets comprises user ID, item ID, overall rating in

the scale of 1 to 5, textual review, and contexts in which the user was experienc-

ing that item. As indicated in [85], taking more contextual categories into account

2https://www.tripadvisor.com
3https://www.yelp.com/dataset/challenge
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could lead to better performance, so we make use of all the available contexts associ-

ated with each review. Specifically, the contextual categories consist of companion,

month, and destination for TripAdvisor dataset, and day of a week, month, and

destination for Yelp. Notice that the contextual categories companion and month

in TripAdvisor indicate with whom and in which month a user stayed in a hotel,

but Yelp does not provide the exact time a user was dining in a restaurant, so the

contextual variables for day of a week and month are inferred from the review time.

For the contextual category destination in both datasets, we took the target city

(where the item is located) as the contextual variable.

3.5.2 Evaluation Metrics

To compare the recommendation performance of different methods, we adopt two

commonly used metrics in recommender systems: Root Mean Square Error (RMSE)

and Mean Absolute Error (MAE).

RMSE is calculated by estimating the quadratic difference between ground-truth

rating ru,i,c and the predicted one r̂u,i,c:

RMSE =

√
1

N

∑
u,i,c

(ru,i,c − r̂u,i,c)2 (3.5.12)

where N is the number of instances in the testing set.

Similarly, MAE can be calculated via the following formula:

MAE =
1

N

∑
u,i,c

|ru,i,c − r̂u,i,c| (3.5.13)

For both metrics, a lower value indicates a better performance.

As to the evaluation of context-aware explainability, we conduct a small-scale

user survey to evaluate the explanations, because there is no available metrics.

3.5.3 Compared Methods

To evaluate the performance of our CAESAR, we compare it with the following

state-of-the-art methods:
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• PMF: Probabilistic Matrix Factorization [88]. This is the standard matrix

factorization method that characterizes users and items by latent factors in-

ferred from observed ratings. We take it as the context-unaware baseline. Its

objective function is optimized by alternative least square (ALS).

• EFM: Explicit Factor Models [133]. It is a joint matrix factorization model

in which user-feature attention and item-feature quality are considered for ex-

plaining recommendations. It is the feature-level explanation baseline, without

considering user contexts. Stochastic gradient descent (SGD) is introduced to

optimize its objective function in our implementation.

• AFM: Attentional Factorization Machines [124]. This model extends factor-

ization machines (FM) [97] by learning the importance of each feature interac-

tion via a neural attention network. It is a context-aware approach, but treats

users, items, and contexts equally as sparse features.

• NFM: Neural Factorization Machines [44]. It is a more generalized FM built

upon neural network for learning high-order feature interactions in a non-

linear way for dealing with sparse data. The way it models contexts is similar

to AFM.

• AIN: Attentive Interaction Network [85]. To model the effects of contexts on

users and items, this model employs two pathways of interaction module, fol-

lowed by attention mechanism to discriminate the impacts of different contexts

on users and items.

We omit the comparison with other context-aware models such as Multiverse

[51], FM [97], CAMF [6] and COT [77], since they are outperformed by the recently

proposed AIN as shown in [85].

3.5.4 Implementation Details

We randomly divide each dataset into training (80%), validation (10%), and testing

(10%) sets, and guarantee that each user/item has at least one instance in the
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Figure 3.6: RMSE on TripAdvisor with varied numbers of latent factors in four

compared context-aware methods.

training set. We repeat the splitting process for 5 times. The validation set is used

for hyper-parameters tuning, and we report the average performance on the testing

set. The early stopping strategy is performed on all the models, i.e., a model’s RMSE

and MAE on the testing set are reported when it reaches the best performance on

the validation set.

We implemented AIN and our CAESAR in Python using TensorFlow, and

adopted the codes of AFM and NFM shared by their authors. All the neural net-

work based methods, i.e., AFM, NFM, AIN and CAESAR, are optimized by Adam

[55]. The initial learning rate of AFM and NFM is searched in [0.005, 0.01, 0.02,

0.05], following the setting in [44]. The number of latent factors of these models is

searched in [8, 16, 32, 64]. Fig. 3.6 shows the recommendation accuracy by varying

the value of this parameter on TripAdvisor dataset4. From the figure, we can see

that these methods generally share the similar trend: fewer latent factors (e.g., 8 for

AFM, NFM and CAESAR, and 16 for AIN) lead to better accuracy, while increasing

the number of latent factors deteriorates the performance, because too many latent

factors may cause overfitting. Therefore, on TripAdvisor we set the number of latent

factors of AFM, NFM and CAESAR to 8, and that of AIN to 16. Matrix factoriza-

tion methods PMF and EFM were also implemented in Python. For PMF, we set

the dimension of latent factors to 20 following [52], and search trade-off parameters

4The results on Yelp dataset are similar, so we do not show here.
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Figure 3.7: RMSE on TripAdvisor (left) and Yelp (right) with different

regularization coefficients on λe in our model CAESAR.

in [0.1, 1, 10, 100]. For EFM, the numbers of explicit factors and implicit factors are

set equal and both searched in [8, 16, 32, 64]. We reuse the other hyper-parameters

of the baselines as reported in the original papers. Furthermore, the weight and bias

parameters of all the methods are learned from scratch with random initialization

for fair comparison.

For our model CAESAR, the learning rate is set to 0.0001, the batch size is 64,

and the number of contextual features n for each context is 100. We use ReLU(·)

as the activation function, and employ 2 hidden layers for interaction module in

the condition of modeling context-independent preference and 1 hidden layer for

context-dependent preference. For the regularization coefficients on different tasks,

we set λr to 1 and λn to 0.0001, and search λe in [0.01, 0.1, 1, 10]. The left part

of Fig. 3.7 shows our method’s performance w.r.t. λe on TripAdvisor dataset and

the right part shows that on Yelp. As it can be seen, the optimal values of λe

on two datasets are different, i.e., 10 for TripAdvisor and 0.1 for Yelp. The larger

the regularization coefficient λe is, the closer the scores from feature-level attention

are to the distribution of contextual features in user reviews. Notice that since the

contextual variables for day of a week and month in Yelp are not the exact time when

a user was dining, the inferred features may not precisely match those expressed in

the target review, which may cause difference between the attention scores and the

distribution vector of contextual features (i.e., small λe).
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(a) Contextual features for business (b) Contextual features for couples

(c) Contextual features for Hong Kong (d) Features according to occurring frequency

Figure 3.8: Word clouds of features identified by our contextual feature mining

approach (a, b, and c) and that based on occurring frequency (d) on TripAdvisor

dataset.

3.6 Results and Analysis

To study our model’s explainability, we provide analysis on features mined by our

contextual feature mining approach, and human evaluation and case study on ex-

planations as generated by CAESAR. We also present the recommendation results

in comparison with baseline models.

3.6.1 Contextual Feature Analysis

We generate word clouds for features on TripAdvisor dataset (see Fig. 3.8), as mined

by our contextual feature mining approach (the results on Yelp dataset show similar

pattern). The size of features in sub-figures (a), (b) and (c) indicates the weight

score computed via Eq. (3.3.2), and that in (d) represents a feature’s occurring

frequency in all the user reviews.

It can be seen that, under the contextual situation business, users have paid
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more attention to facilities like “meeting rooms”, “conference” and “convention cen-

tre”. Relatively, users under couples have preferred leisurely and romantic features,

such as “cocktail hour” and “chocolates”. For the contextual category destination, our

approach is able to find features that reveal a place’s characteristics, e.g., “harbor”,

“shopping”, and “metro station” in Hong Kong. It hence shows that our contextual

feature mining approach is capable of discovering context-aware features. In com-

parison, the features identified according to occurring frequency in Fig. 3.8 (d),

which have been commonly adopted by existing explainable recommendation ap-

proaches [133, 116], primarily reflect some general aspects such as “hotel”, “room”

and “staff”, which are not context-specific.

3.6.2 Human Evaluation on Explanations

To evaluate the quality of explanations produced by our method CAESAR, we con-

duct a human evaluation on TripAdvisor, because the contexts on this dataset are

more precise than that of Yelp as discussed in Section 3.5.4. Compared to auto-

matic evaluation with offline metrics, the results of human evaluation could be more

convincing and reliable, since they reflect real people’s actual perception towards

explanations. However, large-scale human evaluation could be very expensive, so

automatic evaluation is preferred by researchers given that it is more convenient

and easy-to-implement. With these considerations, we opt for a small-scale human

evaluation.

Specifically, in our questionnaire, we prepared two questions, each containing 10

different cases. We then invited 10 people to answer those questions. Specifically,

they all are Chinese, and currently doing either Ph.D. or M.Phil. in computer sci-

ence, so their English language proficiency is qualified for this evaluation. Their

gender distribution is well balanced (5 males vs. 5 females), and their ages are

distributed between 23 and 30. As a consequence of the demographics, their eval-

uation may only reflect a small group of people’s perception to the explanations.

For example, American with high school diploma may value the explanations differ-
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ently. Moreover, since the participants are experts in the field of computer science,

their domain knowledge may cause certain bias to the evaluation. For example, it

could be easier for them than ordinary people to understand what context means,

so their evaluation could be biased to more detailed explanations. Nevertheless, we

conducted this small-scale human evaluation, in order to quickly obtain some initial

results.

The first question (Q1) aims at studying which type of explanations, either

context-aware or context-unaware, could be more helpful. For each case we provided

two explanations respectively returned by our method CAESAR and the baseline

EFM [133]. Specifically, the top 5 features as selected by each method are filled in

its explanation template as shown in Table 3.3. In addition, our method adds one

context related to those features. Along with the explanation and its corresponding

recommendation (a hotel), we also provided the user’s contexts and her/his review

to the hotel. The human judges were then asked to indicate which explanation is

more helpful for them to understand the recommendation.

The second question (Q2) was designed to investigate whether the features given

in the explanation could well describe the selected context. Considering the fact that

there is no available context-aware explanation method to compare at the time of

our experiment, we adopted two simple baselines: RAND and POP. In more details,

given a context and its context-aware features obtained from Section 3.3, RAND

randomly selects some context-aware features, while POP selects features based on

its occurring frequency. Notice that, the details of these three methods were hidden

to human judges and the feature lists were randomly shuffled, which was to fairly

compare their performance. Then, the human judges were asked to evaluate which

feature list is more suitable to describe the given contextual situation.

Specifically, the two evaluation questions, each with one example case, are dis-

played below.

• Q1: After reading the given information, do you think which explanation is

more helpful for you to understand the recommendation?
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Hotel: Novotel Citygate Hong Kong

Context: travelled to Hong Kong as a Couple on February

Review: Hotel is a short distance from the airport via free shuttle

every 15 mins. There is an MTR station and bus stop at the base of

the Citigate Mall and the Ferry and Cable Car is a short walk from the

hotel. Disneyland is just up the road and the Giant Buddha at the top

of the hill (Cable Car, bus or taxi). So the Citigate offers more touring

options than a typical airport hotel. The hotel meets the typical Accor

expectations . . .

– A. This hotel is recommended to you, because its features [sym-

phony, mtr station, mongkok, bldg, airport access] are suitable for

your current context [Hong Kong].

– B. You might be interested in features [room, hotel, staff, rooms,

location], on which this hotel performs well.

• Q2: Imagine you are under a specific context when booking a hotel, which

feature list do you think better describes this context?

Context: December

A. floor, selections, apartment, queue, service

B. Christmas market, premier rooms, birthday stay, flyover, island side

C. service, floor, area, walk, property

We keep EFM’s original template format, as it has been widely adopted in related

work [36, 116, 133], and design our own one which is more suitable for context-aware

explanation. The template difference could potentially influence the response of

participants, but we believe that the highlighted features/contexts are what they

concern. The evaluation results are depicted in Fig. 3.9, where the bar charts show

the vote numbers on the 10 testing cases for different methods, and the pie charts
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Figure 3.9: Results of human evaluation on explanations provided by compared

methods on TripAdvisor dataset. The bar charts show the exact vote numbers on

different testing cases, and the pie charts illustrate the voting percentages.

For EFM in Q1 and POP in Q2, CAESAR is significantly better than them with

p < 0.01 via Student’s t-test.

show the percentages of votes.

For Q1, regarding all of the cases, most human judges regard the explanations

generated by our method CAESAR being more helpful than EFM for them to un-

derstand the recommendation. Moreover, the results are statistically significant.

This validates our model’s capability of returning more useful explanations. As to

Q2, our method obtains 53% votes, which is obviously higher than those of the two

baselines (30% to RAND and 17% to POP). This confirms that to a large extent our

method can find features that better characterize a context. From the bar chart,

we also observe that our method gains more than 5 votes on 6 different cases, while

RAND dominates on 3 cases, leaving POP on only one case. This might be because

RAND and POP both leverage the context-aware features as obtained through our

feature mining approach (see Section 3.3), which may enable them to return some
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reasonable features in some cases. This again demonstrates the effectiveness of our

contextual feature mining approach in finding context-aware features.

3.6.3 Case Study on Explanations

To qualitatively compare the explanations generated by CAESAR and those by

EFM [133], a case study is shown in Table 3.3. The context and feature underlined

are our model’s selected elements to generate the context-aware explanation; while

for EFM only the selected feature is underlined because it is context-unaware.

From the examples we can see that when the same user visits two different

hotels under different contexts, our model can adaptively select the most important

context to her as well as the most relevant features. More specifically, our model

selects “rooftop view”, “floor levels”, “smorgasbord”, and “eating establishments”, to

match the couples context, and selects “harbor” and “location” for the destination

Sydney. In comparison, EFM just selects some general features for the two hotels,

such as “room” and “staff”, which can not distinguish the user’s needs under different

contexts.

3.6.4 Recommendation Performance

The accuracy of our model CAESAR in comparison with baseline models on two

datasets is given in Table 3.4. From this table, we can have several observations.

Firstly, CAESAR consistently achieves the best performance w.r.t. RMSE and

MAE on two datasets. It can be attributed to our model structure that incorpo-

rates explicit contextual features as extracted from users reviews as an important

information source. This illustrates the necessity of fusing explicit features into the

context-aware model, and demonstrates the capability of our proposed supervised

attention mechanism to deal with these features. In addition, we notice that the

performance gap between CAESAR and AIN is relatively small. Our primary goal

has been to achieve explainability, for which we proposed the supervised attention

mechanism, which aligns the attention weights with the feature distribution in the
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Table 3.4: Performance comparison of all methods in terms of RMSE and MAE. The

best performing method and values are boldfaced. * indicates that our model

CAESAR performs significantly better than NFM through Student’s t-test (p < 0.01).

Model
TripAdvisor Yelp

RMSE MAE RMSE MAE

PMF 0.8703 0.6961 1.0856 0.8765

EFM 0.8415 0.6403 1.0557 0.8243

AFM 0.8102 0.6181 1.0355 0.8060

NFM 0.8095 0.6177 1.0366 0.8056

AIN 0.7952 0.6072 1.0111 0.7879

CAESAR 0.7898* 0.6022* 1.0080* 0.7814*

target user review. This mechanism differs from vanilla attention, so it may sacrifice

the accuracy to a certain degree.

Secondly, factorization machines (FM) based models (i.e., AFM and NFM) ob-

tain similar performance, but are dominated by the other context-aware methods

(i.e., CAESAR and AIN) on two datasets. Although AFM and NFM enhance FM

via neural network, they treat users, items and contexts as sparse features and model

all types of interactions in a similar way. In comparison, the other context-aware

methods employ two pathways of interaction module to characterize the effects of

different contexts on users and items, and subsequently adopt attention mechanism

to dynamically infer representations of users and items. This verifies the importance

of modeling different types of interactions in different ways, and the respective roles

of interaction module and attention module in our model.

Thirdly, context-unaware models, i.e, PMF and EFM, underperform all the other

methods that take into account contextual information during recommendation pro-

cess. This is not surprising, as users are likely to make decision according to their

contextual situations especially for service products. As such, context-aware models

can better characterize users’ preferences over item features. Besides, since PMF
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and EFM are both based on matrix factorization, its linearity may make user and

item modeling limited [45], in comparison with other neural network based methods

that model users and items in a non-linear way. In addition, we observe that the

performance of EFM is much better than that of PMF, which may be because the

former takes features extracted from user reviews as complementary information into

its modeling process. This again demonstrates the usefulness of explicit features to

improve recommendation performance.

3.7 Summary

In this chapter, we propose a novel neural model called CAESAR, which is ex-

perimentally demonstrated to be capable of characterizing users’ preferences over

contextual features mined from user reviews, for achieving both context-aware rec-

ommendation and explanation. In particular, our designed two-level attention mech-

anism can distinguish the importance of different contexts and their related features.

Moreover, the supervised attention can align explicit contextual features with im-

plicit ones to generate context-aware explanation, while still being able to enhance

recommendation accuracy simultaneously. Experimental results on two real-world

datasets (TripAdvisor and Yelp) show that our model outperforms the state-of-

the-art baselines in terms of not only rating prediction accuracy, but also returning

context-aware feature-level explanations that are more helpful than context-unaware

explanations as judged by human evaluators.
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Chapter 4

Neural Template Explanation

Generation

4.1 Background

In the previous chapter, we introduced a context-aware explanation method, which

is template-based. A template is a word sequence with some segments acting as its

backbones, and the remaining slots are filled in by input text [121, 11]. In many

template-based explanation approaches, the template is usually defined as “You

might be interested in [feature], on which this product performs well” [133], where

the feature(s) are predicted by means of matrix/tensor factorization [133, 116] or

attention mechanism [36]. However, manually defined templates are expensive to

create. Moreover, they also restrict the expressiveness of explanations. For example,

in the above template all item features are described as “performs well”, which could

not reflect the special property of different features.

In the meantime, natural language generation approaches have obtained re-

search interests recently, owing to their flexibility in text styles. The goal of these

approaches is to automatically produce flexible sentences as learned from user-

generated content, e.g., user reviews. For instance, Attribute-to-Sequence (Att2Seq)

[31], a state-of-the-art review generation method, produces a variety of expressions
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Table 4.1: Example explanations generated by state-of-the-art natural language

generation methods (Att2Seq [31] and NRT [70]) and our NETE. The reference

sentence is the ground-truth explanation extracted from user reviews.

Reference They have a huge variety of things.

NRT The food is good.

Att2Seq I’m not sure if I need to go back.

NETE They have a variety of things to choose from.

Reference The black garlic ramen was good as well.

NRT The food is good.

Att2Seq The food was great.

NETE The ramen was delicious.

(see the examples in Table 4.1). Another typical method, Neural Rating and Tips

generation (NRT) [70], aims to generate short and concise tips. Despite of that,

there are two important issues yet to be addressed in current natural language

generation approaches. First, since these approaches are trained on user-generated

content whose quality cannot always be guaranteed, the topic of the generated sen-

tences may be irrelevant to the recommended item, e.g., “I’m not sure if I need to go

back”. Second, due to the lack of variety in generative signals, a large proportion of

generated sentences may be very similar or even identical, which makes the explana-

tions less personalized to the target users and items. These problems amount to the

importance of quality control in natural language generation approaches, since poor

explanations may bring negative effects to user acceptance of recommendations and

affect the overall experience in recommender systems [111].

In this chapter, we propose a NEural TEmplate (NETE)1 approach to explain-

able recommendation, in an attempt to generate both expressive and high-quality

explanations by bridging the benefits of both template-based and generation-based

approaches. In essence, it is a natural language generation method, and the gener-

1Codes available at https://github.com/lileipisces/NETE
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ated sentences are template-shaped for quality control, e.g, “the rooftop/harbor is a

great place to stay”. The explanations can be more targeted and specific, because

the generation process is implicitly guided by a “neural template” that are adaptive

to the given feature. Table 4.1 shows two example explanations generated by NETE,

which are more relevant to the ground-truth among the comparative methods.

Technically, we design a new recurrent neural network architecture named Gated

Fusion Recurrent Unit (GFRU), which can incorporate neural templates into the

explanation generation process. Specifically, the GFRU in our NETE model consists

of three components: two gated recurrent units (GRU) [27] that are responsible for

generating respectively the item feature word and the explanation context words

(i.e., the template), and a gated fusion unit (GFU) [4] that decides which GRU’s

word to be emitted at each time step. After the generation process, the context

words constitute the neural template.

In the following, we first introduce our neural template generation model in

Section 4.2 and Section 4.3. Section 4.4 then introduces the experimental setup,

while interpretation of the results are provided in Section 4.5. We summarize this

chapter in Section 4.6.

4.2 Model Description

In this section, we present our proposed NEural TEmplate (NETE) model, which

consists of two modules for recommendation and explanation, respectively. An

overview of the model is given in Fig. 4.1. The goal of recommendation mod-

ule is to predict a rating r̂u,i, given a user u and an item i. Meanwhile, based on

a feature fu,i of the item that the user is interested in, our model can generate a

template-shaped sentence, which is realized by our proposed Gated Fusion Recur-

rent Unit (GFRU), as an explanation to the recommendation. The input feature

fu,i could be an arbitrary feature that we want the generated explanation to talk

about. Depending on the application scenario, it can be either manually set by the

user u, or predicted by a feature prediction model. In Section 4.3, we provide a
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Figure 4.1: Overview of our proposed model NETE that consists of two basic

modules for rating prediction (left) and explanation generation (right),

respectively. Given a feature, the GFRU component in our model is able to

generate a template-shaped explanation that contains the feature.

simple point-wise mutual information (PMI)-based approach for feature prediction.

In summary, the training data comprise of users, items, ratings, features and expla-

nation sentences, while during the testing stage, only users, items and features are

needed.

Throughout this chapter, scalars are written in italic lower-cases, e.g., x, vectors

are denoted as bold lower-cases, e.g., x, and matrices are represented as bold upper-

cases, e.g., X, no matter whether they carry subscript or superscript or not. In

addition, all vectors in this chapter are column vectors, if there is no additional

statement. Table 4.2 depicts the key notations and concepts.

4.2.1 Personalized Recommendation

Traditionally, rating prediction task is implemented via the inner product between

the user and item latent factors [57], but its bi-linear nature may make it difficult

to model complex user-item interactions [45]. Therefore, we adopt non-linear trans-

formations that have been shown to have better representation ability in different

fields, such as computer vision [58], natural language processing [87] and speech

recognition [40]. More specifically, we employ multi-layer perceptron (MLP) with L
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Table 4.2: Key notations and concepts.

Symbol Description

T training set

U set of users

I set of items

V set of words

F set of features

E set of explanations

pu embedding of user u

qi embedding of item i

W weight matrix

w,b weight vector

b weight scalar

n dimension of RNN state

d dimension of embedding

L number of hidden layers

ru,i rating assigned by user u on item i

σ(·) sigmoid activation function

tanh(·) hyperbolic tangent function

softmax(·) softmax function
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hidden layers to capture the interactions between users and items, as shown in the

left part of Fig. 4.1. Formally, given the IDs of user u and item i, we can obtain

their latent vectors pu and qi (also called representations or embeddings), and then

the recommendation module is defined as:

z1 = σ(W1[pu,qi] + b1)

z2 = σ(W2z1 + b2) and r̂u,i = w>r zL + br

. . .

zL = σ(WLzL−1 + bL)

(4.2.1)

where [·, ·] denotes the concatenation of vectors, σ(·) is the sigmoid activation func-

tion, Wx ∈ R2d×2d and bx ∈ R2d are weight matrices and bias vectors in the hidden

layers, while wr ∈ R2d and br ∈ R correspond to the weight and bias parameters in

the final linear layer.

To minimize the difference between ground-truth ratings and the predicted ones,

we adopt the mean squared error loss function:

Lr =
1

|T |
∑

(u,i)∈T

(ru,i − r̂u,i)2 (4.2.2)

where T is the training data set, and ru,i denotes the ground truth rating that user

u assigned to item i. In this way, the randomly initialized latent vectors pu and qi

can be updated via back-propagation during the training stage.

For personalized recommendation, we can predict ratings for each user’s unob-

served items, and recommend a number of top-ranked items.

4.2.2 Explanation Generation

The module for explanation generation (illustrated in the right part of Fig. 4.1) is

compatible with any recommendation module, since it only leverages the predicted

ratings resulting from the recommendation module to enforce sentiment control

on the generated explanations. In the following, we first introduce the encoder-

decoder framework for natural language generation, and then present our proposed

Gated Fusion Recurrent Unit (GFRU), which is able to generate template-shaped

explanations.
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Encoder-decoder. The explanation generation problem can be formulated as a

table-to-text generation task [121], where the table contains a user, an item, and

other attributes, e.g., a rating for the user-item pair. We use user u’s representation

pu ∈ Rd and item i’s representation qi ∈ Rd as input to the encoder, so that the

decoded word sequence can be personalized to different user-item pairs. Moreover,

we also incorporate the predicted rating r̂u,i, so as to enforce sentiment control on

the generated explanation. Concretely, suppose the rating scale is 1 to 5, following

the common practice in recommender systems and sentiment analysis, we map r̂u,i to

-1 if the rating is less than 3, otherwise +1. We then represent this sentiment using

the corresponding representation su,i ∈ Rd (there are only two vectors, representing

positive and negative sentiment, respectively).

During the training phase, we use the sentiment associated with the given feature

in a sentence instead of the overall rating to create the sentiment representation,

because we find that the feature sentiment is more consistent with the user’s per-

ception on the item than the rating. We will introduce how to obtain the feature

sentiments in Section 4.3. To encode the inputs into a vector, we adopt MLP with

one hidden layer as the encoder,

h0 = tanh(We[pu,qi, su,i] + be) (4.2.3)

where We ∈ Rn×3d and be ∈ Rn are model parameters, and tanh(·) denotes the

hyperbolic tangent function.

The encoded vector h0 is used as the initial hidden state of the decoder. Hidden

states of the other time steps can be computed by recurrently feeding the represen-

tation of the (t− 1)-th input word xt−1 into the decoder,

ht = g(xt−1,ht−1) (4.2.4)

where the hidden vector ht−1 encodes the information of previously generated words,

and the decoder g(·) can be recurrent neural networks (RNN), long short-term mem-

ory (LSTM) networks [47], or gated recurrent units (GRU) [27]. In this work, we

adopt GRU as the decoder, because it shows competitive performance with much

better computational efficiency than LSTM [70].
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During each step of decoding, the decoder recurrently produces a word based on

previously generated words, which can be expressed as,

p(yt|y<t,h0) = softmaxyt(Wvht + bv) (4.2.5)

where softmax(·) denotes the softmax function, Wv ∈ R|V|×n and bv ∈ R|V| are

model parameters, y<t represents words produced before time step t, and yt is the

word predicted at the current time step. At time step t, the decoder takes in the

hidden vector ht and maps it onto a |V|-sized vector, where V is the vocabulary of

words in the dataset. This vector can be regarded as the probability distribution over

the vocabulary, from which a word yt with the largest probability can be sampled.

Gated Fusion Recurrent Unit. Although vanilla decoder can be employed to

generate explanations, its generation could be irrelevant to the recommended item,

as discussed above. To address this problem, we propose to fuse one feature of the

item into the decoding process, which is realized by our proposed Gated Fusion

Recurrent Unit (GFRU). Thus, Eq. (4.2.4) can be reformulated as,

ht = g(xt−1,ht−1,xf ) (4.2.6)

where xf is the representation of the feature f ∈ F , and F ⊂ V . There are some

works [70, 26] that fuse auxiliary information via the initial hidden state, but the

long-term dependency problem [8] may make the information’s influence become

weaker and weaker over time. This problem could be avoided in our model, because

the given feature is fed into GFRU at each time step to refresh its memory.

Specifically, our GFRU consists of three components: two GRUs and one gated

fusion unit (GFU) [4]. We treat the feature and the neural template as two types

of information, so we use two GRUs to process them, which are finally merged by

GFU. During explanation generation process, the context GRU takes the previously

generated word as input, and the feature GRU takes the given feature all the time,

as shown in Fig. 4.2. The GFU then combines the outputs resulting from the two

GRUs to emit a final hidden state, which can be used to predict the next word.
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Figure 4.2: The structure of our proposed GFRU decoder with three components.

The word produced in the previous step and the given feature are processed by

the bottom two GRUs, respectively, whose outputs are merged by the GFU component,

which produces a final hidden state for the current time step.

Let ht−1 ∈ Rn be the previous hidden state of our GFRU, and xt−1 ∈ Rd be the

representation of the previously generated word. The hidden state of context GRU

at the current time step, hαt = gα(xt−1,ht−1), can be computed as follows,

zαt = σ(Wα
z [xt−1,ht−1] + bαz )

rαt = σ(Wα
r [xt−1,ht−1] + bαr )

h̃αt = tanh(Wα
h [xt−1, r

α
t � ht−1] + bαh)

hαt = zαt � ht−1 + (1− zαt )� h̃αt

(4.2.7)

where Wα
x ∈ Rn×(d+n) and bαx ∈ Rn are model parameters, zαt and rαt control

how much of the past information to keep and forget, respectively, and � denotes

element-wise multiplication. Accordingly, with the previous hidden state of GFRU

ht−1 ∈ Rn and the representation of the feature xf ∈ Rd, the current hidden state

of the feature GRU is defined as hβt = gβ(xf ,ht−1). Notice that, the two GRUs do

not share parameters, so we use superscripts α and β to differentiate them.

Then, we integrate the two types of decoding information, i.e., hαt and hβt , into
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the final hidden state ht via the GFU. The computing equations are as follows,

ĥαt = tanh(Wαh
α
t )

ĥβt = tanh(Wβh
β
t )

k = σ(w>k [ĥαt , ĥ
β
t ])

ht = (1− k)� hαt + k � hβt

(4.2.8)

where Wα ∈ Rn×n, Wβ ∈ Rn×n and wk ∈ R2n are parameters to be learned.

From Eq. (4.2.8), we can see that the weight k automatically controls the decoding

information of the two GRUs. When k is small, the output of GFRU mainly comes

from the context GRU to produce a template-shaped word sequence. Conversely,

when it is large, our GFRU relies on feature GRU to fill the given feature in the

template. With the GFRU that is able to perform generation according to an item

feature, we can improve the quality of the generated explanation by making it more

relevant to the recommended item.

Loss Function. To train the module of explanation generation, we draw on the

widely used Negative Log-Likelihood (NLL) loss function, and compute the loss for

each user-item pair in the training set,

Le =
1

|T |
∑

(u,i)∈T

1

|Eu,i|

|Eu,i|∑
t=1

− log p(yt) (4.2.9)

where Eu,i is the ground-truth explanation for the user-item pair (u, i), |Eu,i| is its

length in number of words, and p(yt) denotes the predicted probability of word yt

from Eq. (4.2.5).

4.2.3 Model Training

In general, our explainable recommendation framework in Fig. 4.1 involves two

modules for two tasks – the recommendation task and the explanation task. As

discussed in Section 4.2.2, our explanation module is compatible with any rating

prediction model. To learn the model parameters, one option is to jointly train the

two tasks in the manner of multi-task learning. But to make our approach general
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enough so as to study the compatibility with different recommendation models,

we propose to train them separately in a sequential manner. Specifically, we first

optimize the loss function of the recommendation task (Eq. (4.2.2)) based on the

user-item pairs in the training data, followed by that of the explanation task (Eq.

(4.2.9)). Notice that, since the two tasks are separated, the representations of users

and items (i.e., pu for user u and qi for item i) in the two tasks are different sets

of latent vectors. During the testing stage, the predicted ratings resulting from the

recommendation module are used as the input sentiment for the explanation task.

4.3 Feature Prediction based on PMI

As we discussed in the previous section, our NETE model can generate an explana-

tion that talks about a given feature. According to different application scenarios,

this feature could be either manually specified, or predicted from data. In this sec-

tion, we provide a simple method to predict the feature for the target item, on which

the user did not have interaction. It particularly considers the relationship between

features in the user’s historical reviews and those in the item’s reviews.

We first apply a sentiment analysis toolkit2 [134] to extract features (i.e., aspects)

and their associated sentiments from user reviews, e.g., (rooms, spacious, +1) from

the sentence “The rooms are spacious”, where “rooms” is a feature word, “spacious”

is an opinion word, and +1 means that the feature-opinion pair expresses a positive

sentiment. We denote the collection of all extracted features as F . As point-wise

mutual information (PMI) has been widely used in computational linguistics to find

the association between words/features [89, 128], we employ this approach to predict

a user’s interests in a feature by comparing it with features mentioned in the user’s

reviews.

Formally, given two features fu and fi associated with user u and item i, respec-

2Our procedure to create (feature, opinion, sentence, sentiment) quadruples from user reviews

and the already created datasets are available at https://github.com/lileipisces/Sentires-Guide.
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tively, the PMI is computed as:

PMI(fu, fi) = log
p(fu, fi)

p(fu)p(fi)
= log

p(fu|fi)
p(fu)

(4.3.10)

Then, we select the feature f̂i with the largest PMI score from item i’s feature

collection Fi as prediction, which is achieved by comparing against user u’s features

Fu, i.e., f̂i = argmaxf∈Fi
PMI(Fu, f), where

PMI(Fu, f) = log
p(Fu|f)

p(Fu)
≈ log

∏
f ′∈Fu

p(f ′|f)∏
f ′∈Fu

p(f ′)

=
∑
f ′∈Fu

log
p(f ′|f)

p(f ′)
=
∑
f ′∈Fu

PMI(f ′, f)

(4.3.11)

The approximation in Eq. (4.3.11) is based on the independence assumption

between the prior distribution p(f ′) and posterior distribution p(f ′|f). The assump-

tion may not always hold, but we use them in a pragmatic way, so that feature-level

PMI on user u’s features is additive. In particular, feature-level PMI penalizes a

frequently occurring feature by dividing its prior probability, which could help us

filter out less informative features for producing better explanations. In implemen-

tation, we use a feature’s occurring frequency in all the user reviews to compute the

feature-level PMI:

PMI(f ′, f) =
Freq(f ′, f)

Freq(f ′) · Freq(f)
(4.3.12)

where Freq(f ′, f) denotes two features’ co-occurring frequency.

4.4 Experimental Setup

4.4.1 Datasets

In our experiments, we use three real-world datasets from different domains, i.e.,

hotel, restaurant and movie, to evaluate our proposed model. For the hotel domain,

we construct the dataset with reviews crawled from a travel website TripAdvisor3.

Specifically, we implement a crawler to collect all the user reviews associated with

3https://www.tripadvisor.com
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Table 4.3: Statistics of the datasets.

TripAdvisor Yelp Amazon

# of users 9,765 27,147 7,506

# of items 6,280 20,266 7,360

# of reviews 320,023 1,293,247 441,783

# of features 5,069 7,340 5,399

Avg. # of reviews / user 32.77 47.64 58.86

Avg. # of reviews / item 50.96 63.81 60.02

Avg. # of words / explanation 13.01 12.32 14.14

every hotel located in an international city Hong Kong. To obtain past interac-

tions of the users appeared in these reviews, the crawler subsequently collects their

historical reviews. We only keep English reviews, which gives us 2,118,108 records

in total. For restaurant domain, we use the dataset from Yelp Challenge 20194.

This publicly available dataset consists of 6,685,900 restaurant reviews written by

1,637,138 users for 192,606 businesses located in 10 metropolitan areas. The last

dataset for the movie domain is from Amazon 5-core5 Movies & TV, which contains

1,697,533 reviews by 123,960 users for 50,052 items.

Since the three datasets are very large, we further process them by recursively

removing users and items with less than 20 interactions, which results in three

subsets. Each review record in our datasets comprises of user ID, item ID, overall

rating in the scale of 1 to 5, and textual review. After extracting features from user

reviews, for each record we select one sentence containing at least one feature from

the review as the ground-truth explanation. During the testing stage, we assume

that the features in the explanations are manually set by the users themselves. The

key characteristics of the three datasets after processing are presented in Table 4.3.

4https://www.yelp.com/dataset/challenge
5http://jmcauley.ucsd.edu/data/amazon
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4.4.2 Evaluation Metrics

To measure the recommendation accuracy of different methods, we adopt two widely

used metrics: Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).

For both metrics, a lower value indicates a better performance.

As to the explainability, we evaluate the generated explanations from two per-

spectives: the relevance to ground-truth text and the degree of personalization.

For the first perspective, we adopt two commonly used metrics, i.e., BLEU [91]

in machine translation and ROUGE [75] in text summarization, to estimate the

overlapping of text segments between a generated explanation and the ground-truth.

For the evaluation in different granularities, we report the results of BLEU-1 and

BLEU-4, and use Precision, Recall and F1 of ROUGE-1 and ROUGE-2. The larger

BLEU and ROUGE scores are, the closer the generated explanations are to the

ground-truth.

For the second perspective, i.e., personalization degree, we propose four met-

rics: the ratio of unique sentences, the ratio of explanations that contain the given

features, the ratio of distinct features in all the generated explanations, and the

diversity of features between any two explanations:

1. Unique Sentence Ratio (USR). As discussed before, we find that the

generated sentences in existing methods tend to be similar, i.e., many user-item

pairs have exactly the same explanation. To examine how severe the problem is, we

present this metric that calculates how many unique sentences are generated.

USR = |E| /N (4.4.13)

where E denotes the set of unique explanations generated by a model, and N is the

total number of testing samples. Notice that, only the exactly matched sentences

are considered being identical, and as a result only one of them is added to E .

2. Feature Matching Ratio (FMR). Besides sentence-level evaluation, we

also evaluate the generated explanations at feature-level. Since a feature is given for

each user-item pair as input to our model, we are interested in whether it is really
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included in the generated explanation, which can be formulated as follows:

FMR =
1

N

∑
u,i

δ(fu,i ∈ Êu,i) (4.4.14)

where Êu,i is the generated explanation for the user-item pair, fu,i is the given

feature, and δ(x) = 1 if x is true and δ(x) = 0 otherwise.

3. Feature Coverage Ratio (FCR). We propose this metric to measure the

features at corpus-level. Intuitively, the more features in the ground-truth explana-

tions a model generates, the better preference modeling capability the model has.

Therefore, this metric estimates the ratio of features in the produced explanations,

as compared with those in a whole dataset:

FCR = Ng/ |F| (4.4.15)

where F is the collection of unique features in ground-truth explanations, and Ng

is the number of distinct features appeared in the generated explanations.

4. Feature Diversity (DIV). It is reasonable that explanations generated for

different user-item pairs do not always discuss about the same feature. To estimate

how diverse features contained in explanations are, we present this metric. Let F̂u,i

and F̂u′,i′ respectively denote two sets of features in two generated explanations, we

can measure their difference. To calculate the feature diversity in the testing data,

we estimate the difference between any two feature sets as follows,

DIV =
2

N × (N − 1)

∑
u,u′,i,i′

∣∣∣F̂u,i ∩ F̂u′,i′∣∣∣ (4.4.16)

where ∩ represents the intersection of two sets, and |·| denotes the number of ele-

ments in the resulting set.

A lower DIV indicates a smaller overlap between feature sets, and thus a higher

diversity. For the other metrics, i.e., USR, FMR and FCR, the higher the scores

are, the better the performance is. Overall, the four proposed metrics evaluate

explanations from different perspectives, and all of them can be applied to other

explanation generation methods.
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4.4.3 Compared Methods

Since our key focus in this work is explanation generation, we first introduce compar-

ative methods in this regard. Specifically, we compare our model with two state-of-

the-art natural language generation models, i.e., Neural Rating and Tips generation

(NRT) [70] and Attribute-to-sequence (Att2Seq) [31]. We omit other natural lan-

guage generation models, whose inputs are different from ours, which makes them

not directly comparable. For example, Visually Explainable Collaborative Filtering

(VECF) [22] and Multimodal Review Generation (MRG) [112] generate text based

on image features, while in [120] neighborhood relation between reviews is required

for review generation. We also provide two variants of our own model for ablation

study.

• NRT: Neural Rating and Tips generation [70]. This model adopts multi-layer

perceptron (MLP) to predict a rating for a user-item pair, and formulates the

explanation generation problem as a text (i.e., tip) summarization task. The

two tasks of recommendation and tip generation are integrated into a multi-

task learning framework. In our implementation, the explanation sentence is

regarded as tip.

• Att2Seq: Attribute-to-Sequence [31] employs MLP to encode three attributes,

i.e., user, item and rating, and adopts two-layer LSTM to decode the encoded

representations for generating a textual review. In our implementation, the

LSTM is replaced by GRU for the consistency with our model, and the expla-

nation sentence is treated as review. We also disable its attention mechanism,

because it makes the generated text not quite readable in our experimental

trials.

• NETE-GRU: This is a variant of our model NETE, where the decoder is a

standard GRU instead of our proposed GFRU. By comparing with this variant,

we could know whether GFRU truly helps with explanation generation.

• NETE-PMI: The only difference between this variant and the standard NETE
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model is that its input features are predicted by the PMI method introduced in

Section 4.3, while NETE uses the feature given by a ground-truth explanation

to see whether it is able to generate a similar sentence commenting about this

feature.

To evaluate the recommendation performance, in addition to NRT (NETE-GRU

and NETE-PMI are excluded because their recommendation module is the same as

NETE’s), we compare with the following four typical rating prediction methods:

• PMF: Probabilistic Matrix Factorization [88]. This is the standard matrix fac-

torization method that characterizes users and items by latent factors inferred

from observed ratings. We use alternative least square (ALS) to optimize its

objective function.

• SVD++: Singular Value Decomposition [56]. It extends matrix factoriza-

tion by regarding items that a user interacted with as implicit feedback, and

integrates them into the latent factor modeling.

• ConvMF: Convolutional Matrix Factorization [52]. It employs a convolu-

tional neural network (CNN) to exploit textual information from item de-

scription for enhancing PMF. We concatenate user reviews of an item as its

description.

• DeepCoNN: Deep Cooperative Neural Networks [136]. This method learns

the representations of users and items from their aggregated reviews via two

parallel convolutional neural networks (CNN) [54].

4.4.4 Implementation Details

We randomly split each dataset into training (80%), validation (10%) and testing

(10%) sets, and ensure that there is at least one instance in the training set for

each user/item. We repeat the splitting process for 5 times, and report the average

performance on the testing set, while the validation set is used for hyper-parameters

58



tuning. The early stopping strategy is performed for all the models, i.e., a model’s

results on the testing set are reported, when its loss on the validation set reaches

the minimum.

We implement all the methods in Python. All the neural methods, i.e., ConvMF,

DeepCoNN, Att2Seq, NRT and NETE, are implemented using TensorFlow, and

optimized by Adam [55] with β1 = 0.9, β2 = 0.999 and ε = 10−8. For MF-based

models, i.e., PMF, SVD++ and ConvMF, we set the number of latent factors to

20 (optimal choice on our datasets). The regularization parameter of PMF and

ConvMF are searched from [0.1, 1, 10, 100], while both the regularization parameter

and learning rate of SVD++ are searched from [0.1, 0.01, 0.001]. For review-based

methods, i.e., ConvMF and DeepCoNN, we set the maximum document length of

aggregated reviews to 1,000 words. For all the models that make use of text, we

select top 20,000 distinct words with the largest frequency on the training set to

construct the vocabulary V . For all the natural language generation models, i.e.,

Att2Seq, NRT and NETE, we set the maximum length of generated text to 15, which

is reasonable as the average length of explanation sentences is around 13 (as shown

in Table 4.3). Another reason of limiting the sentence length is that presenting

too much information may overwhelm users [119, 46]. We reuse the other hyper-

parameters of the baselines as reported in the original papers.

For our model NETE, the learning rate is set to 0.0001 and the batch size 128.

We set d (the dimension of user/item/sentiment/word representations) as 200, n

(the dimension of RNN hidden states) as 256, and L (the number of MLP layers for

rating prediction) as 4. For regularization, the dropout ratio of RNN is set to 0.2.

4.5 Results and Analysis

In this section, we first present quantitative evaluation on the generated explana-

tions (evaluated via both automatic metrics and human evaluators), followed by a

qualitative analysis on explanation case studies. At last, we evaluate the recommen-

dation performance, as well as the feature prediction performance.
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4.5.1 Quantitative Analysis on Explanations

Evaluation results of the explanations as generated by all the natural language

generation methods on the three datasets are shown in Tables 4.4, 4.5 and 4.6. We

first analyze the personalization degree in terms of the four metrics, i.e., USR, FMR,

FCR, and DIV.

As it can be seen, our NETE model and its variant NETE-PMI generally perform

better than the other methods on different metrics, especially on USR, which mea-

sures the ratio of generated unique sentences. By comparing the two baselines NRT

and Att2Seq, we can find that the former generates less than 1% unique sentences

on each dataset, while the latter produces diverse sentences with much higher USR.

In the meantime, NRT’s performance on ROUGE and BLEU is generally as good

as Att2Seq, which evidences that ROUGE and BLEU could not properly evaluate

sentence diversity. Because of our proposed GFRU component, our NETE model

generates approximately 55% unique sentences on the three datasets, which shows

the capability of our model in generating diverse explanations.

On the other three metrics, all the models show a similar trend as on USR.

Again, owing to the GFRU design in our model, the feature coverage ratio (FCR)

and feature diversity (DIV) of explanations are largely improved. Moreover, in terms

of feature matching ratio (FMR), approximately 75% of the explanations generated

by our model contain the given features, which implies its good controllability to

comment about these features.

Notably, we observe that NETE-PMI performs better than NETE on USR and

FCR. The input features to NETE-PMI are predicted, and they may not exactly

match those in the testing samples. Hence, the user-item-feature combination may

not be commonly seen in the training data, and the generated explanations and their

contained features could be more diverse, resulting in higher USR and FCR. With

respect to the other two metrics, i.e., FMR and DIV, NETE-PMI’s performance is

also competitive to baselines. This variant shows our model’s capability in dealing

with unseen features, which is quite common in real-world scenarios.
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Finally, we analyze the results on BLEU and ROUGE. As we can see, our NETE

model consistently outperforms all the baselines/variants on three datasets. We at-

tribute this to the effectiveness of our GFRU module in generating template-shaped

explanations that are more relevant to the ground-truth. Generally, NRT, Att2Seq

and NETE-GRU achieve the same performance on three datasets, because they all

adopt GRU for natural language generation. Our model improves their performance

by a large margin, notably with over 100% improvements regarding BLUE-4 and

ROUGE-2, which focus on the overlapping of n-grams between generated text and

the ground-truth. This shows that our model is able to produce high-quality ex-

planations that are semantically much closer to the ground-truth, when the given

features are consistent with those in the testing samples. On the other hand, NETE-

PMI that takes as input the features predicted by the PMI method, reaches the

similar performance as the GRU-based methods, because these features may not

always match those in the testing samples (e.g., “room” vs. “location”), and thus

the generated explanations may talk about other topics different from those in the

ground-truth sentences. If we have an ideal feature predictor that can accurately

predict the features in the ground-truth, then our model can generate better expla-

nations than the baselines. But since feature prediction is not the key focus of this

work, we only provide a simple PMI which unfortunately could not always perfectly

predict the features in the testing samples.

4.5.2 Human Evaluation on Explanations

To investigate whether the generated explanations are truly helpful to users in the

context of recommendation, we conduct a small-scale user survey on Yelp dataset,

since it is about food that people consume every day.

Specifically, we prepare two questions, each containing 20 cases that are ran-

domly sampled from the testing set. We invite 10 volunteers (most are postgraduate

students in our department) to evaluate the results. The first question (Q1) is a

pair-wise evaluation task, where for each case we ask the participants to choose one
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Figure 4.3: Results of human evaluation on generated explanations on Yelp

dataset. The blue dotted lines show the average votes for the blue option across

20 cases.

from two explanations respectively generated by our model NETE and the baseline

Att2Seq6 [31] in terms of the explanation’s similarity to the given reference. No-

tice that, to make the comparison fair, we hide the details of models and inform

the participants that the answers are randomly shuffled. This task is to investigate

whether our model could generate high-quality explanations relative to the base-

line. After that, a point-wise evaluation (Q2) on the explanations generated by our

model NETE is performed, for which we ask the participants to judge whether the

explanation is helpful for them to evaluate the feature of a recommended restaurant.

The two questions are listed below:

• Q1: Which answer is closer to the reference sentence in terms of semantic

similarity?

• Q2: Assume you are interested in one feature of a restaurant, do you think

the generated explanation is helpful for you to evaluate that feature?

6We omit NRT for comparison because its explanations are identical, which may not bring

positive results when judged by human evaluators.
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We depict the results in Fig. 4.3. The bar chart for Q1 shows that our model

obtains 8 votes on average across those 20 cases, which is obviously higher than 2

votes obtained by Att2Seq, which may be because our model is able to integrate the

given features into the generation process, making the explanations more relevant

to the reference sentences. For Q2, the votes are different from case to case, but on

average 7 participants agree that our model explains the given features clearly. This

verifies that to a large extent our model is competent to generate useful explanations

that can help users better understand the recommended products.

4.5.3 Qualitative Case Study on Explanations

In this subsection, we present four groups of generated explanations on the Tri-

pAdvisor dataset in Table 4.7 to show our model’s good controllability in terms of

controlling the explanations to talk about certain features. Results on the other two

datasets show similar pattern.

As we can see from the first group, when our model is given different features,

i.e., “bathroom”, “tub” and “rooms”, the generated explanations are not only different

but also highly relevant to the features, which shows that our model can generate

more targeted explanations for the given features. By comparing the last generated

sample in the first group with that in the second group (both about feature “rooms”

but the user-item pairs are different), the model generates explanations that describe

the same feature in different expressions, which shows that our model is able to pro-

duce explanations personalized for different user-item pairs. The last two groups

with predicted ratings lower than 3, i.e., negative sentiment, show that our model is

capable of controlling the sentiment of the generated explanations. Admittedly, our

model is not flawless, because in the last group the predicted rating deviates too

much from the ground-truth (2.76 v.s. 4). We provide in-depth analysis on recom-

mendation performance in the next subsection. Overall, these observations manifest

our model’s controllability in terms of generating explanations corresponding to the

given user, item, feature and sentiment.
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Table 4.7: Example explanations generated by our NETE model on the TripAdvisor

dataset. The first line of each group shows the ground-truth rating and

explanation, while other lines show the predicted ratings, the given features,

and the generated explanations, where rating < 3 denotes negative sentiment and

≥ 3 positive sentiment. We highlight the mentioned feature in the generated

explanations.

Rating Feature Explanation

4 The rooms are spacious and the bathroom has a

large tub.

3.90

bathroom The bathroom was large and had a separate shower.

tub The bathroom had a separate shower and tub.

rooms The rooms are large and comfortable.

4 The rooms are brilliant and ideal for business trav-

ellers.

4.13 rooms The rooms are very spacious and the rooms are very com-

fortable.

2 The broken furniture and dirty surfaces are a dead

giveaway.

2.96 furniture The furniture is worn.

4 Ideal for plane spotters and very close to the air-

port.

2.76 airport It is not close to the airport.

Moreover, there exist common expressions in the generated sentences, e.g., “__

was large/comfortable”, which constitute templates as learned from data rather than

manually defined. This shows that our model can generate template-shaped expla-

nations that automatically adapt to the input features. Overall, the linguistic quality

of the explanations is satisfactory.
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Table 4.8: Performance comparison of all the rating prediction methods in terms

of RMSE and MAE. The best performing values are boldfaced.

TripAdvisor Yelp Amazon

RMSE MAE RMSE MAE RMSE MAE

Traditional methods

PMF 0.870 0.696 1.086 0.877 1.034 0.807

SVD++ 0.798 0.610 1.011 0.785 0.965 0.718

Neural methods

ConvMF 0.799 0.613 1.024 0.807 0.978 0.751

DeepCoNN 0.796 0.607 1.011 0.789 0.959 0.721

NRT 0.792 0.605 1.007 0.783 0.957 0.718

Ours

NETE 0.792 0.608 1.010 0.789 0.961 0.727

4.5.4 Recommendation Performance

The recommendation performance of our model as compared with baselines is shown

in Table 4.8. The observations on the three datasets are consistent. In particular,

NRT generally achieves the best performance, because it trains the two tasks of

rating prediction and explanation generation in a multi-task learning framework,

where the recommendation task benefits the additional textual information from

the explanation task via the shared user and item representations. In comparison,

NETE trains the two tasks separately, so it forbids the rating prediction task to

access such information, but its recommendation accuracy is still comparable to

NRT’s. Therefore, we believe the sacrificed minor accuracy is tolerable.

We also see that deep neural methods (i.e., NETE, NRT, ConvMF and Deep-

CoNN) generally perform better than traditional shallow methods (PMF and SVD++),

because the non-linear transformations in the former have better representation

learning ability [45]. In addition, we notice that the performance gap between tradi-
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Table 4.9: Performance comparison of two feature prediction methods in terms of

Precision (Pre) and Recall (Rec). The best performing values are boldfaced.

TripAdvisor Yelp Amazon

Pre@10 Rec@10 Pre@10 Rec@10 Pre@10 Rec@10

RAND 0.050 0.108 0.031 0.097 0.040 0.120

PMI 0.122 0.256 0.112 0.342 0.081 0.246

tional methods and review-based methods (ConvMF and DeepCoNN) is small, which

may be because review-based methods are mainly to address sparsity problem, but

the three datasets are made relatively dense for studying explanation generation.

Among traditional methods, SVD++ is better than PMF since the former takes

item IDs as implicit feedback into latent factor modeling. Regarding review-based

methods, DeepCoNN outperforms ConvMF because the former considers reviews

for both user and item modeling, while the latter only models reviews of the item

which may be insufficient.

4.5.5 Feature Prediction Analysis

To demonstrate the effectiveness of our feature prediction method (denoted as PMI)

proposed in Section 4.3, we compare the predicted features with those appeared

in the corresponding reviews. Specifically, with feature scores computed via Eq.

(4.3.11), for each user-item pair we can obtain a ranked feature list. Then, we keep

the top 10 as predictions. For comparison, we design a baseline method named

RAND that randomly selects 10 features from the target item’s feature set for each

testing user-item pair. To evaluate the two methods, we adopt Precision and Recall.

The results on the three datasets are shown in Table 4.9. Our PMI method

consistently performs two times better than RAND. This is as expected, because our

method takes both users’ and items’ features into consideration when computing the

PMI values, while RAND arbitrarily selects features from the target item’s feature
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set without considering the users, which would result in non-personalized feature

lists and therefore low scores on Precision and Recall.

4.6 Summary

In this chapter, we aim to improve both the expressiveness and the quality of rec-

ommendation explanations. To this end, we propose NETE – a NEural TEmplate

explanation generation framework that bridges the benefits of both template-based

approaches and natural language generation approaches. We not only evaluate the

generated explanations based on traditional text quality measures such as BLEU

and ROUGE, but also on innovative metrics that evaluate the sentence uniqueness,

feature matching, feature coverage, and feature diversity. Experimental results show

that our approach is highly controllable to generating explanations that talk about

the given user, item, sentiment, and feature.
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Chapter 5

Natural Language Explanation

Generation

5.1 Background

In the previous chapter, we introduced a neural template explanation generation

approach. In order to generate template-like explanations, this approach requires

item features specified in advance, which may not always be available. To address

this problem, in this chapter we design a more general natural language generation

approach, where items features are optional, while user and item IDs are mandatory,

since they are crucial identifiers for distinguishing one user/item from the others.

Specifically, different users may care about different item features (e.g., “style” vs.

“quality”), and different items may have different characteristics (e.g., “fashionable”

vs. “comfortable”). An example of explanations for a given pair of user ID and item

ID could be “the style of the jacket is fashionable”.

We implement this idea with Transformer [114], given its strong language mod-

eling ability as demonstrated on a variety of tasks [94, 30, 10]. However, it would

be problematic to directly put IDs and words in the target explanation together

for attention learning, since they are in very different semantic spaces. In doing so,

the IDs are treated as words, but the IDs appear far less frequently than words.
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(a) Standard Transformer model, where

the user and the item have no contribution

to each generation step.
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Figure 5.1: Attention visualization of two models when generating an explanation

for the same user-item pair (see the first two columns). They are both from

the last attention layer, so the target sequences are offset by one position for

better illustration. The larger the attention weights, the lighter the cells.

For example, a paragraph of review (and thus hundreds of words) on e-commerce

platform only corresponds to a single pair of user ID and item ID. As such, the IDs

may be regarded as out-of-vocabulary tokens, to which the Transformer model is

insensitive. As shown in Fig. 5.1(a), when generating an explanation for a user-

item pair, standard Transformer relies heavily on the special <bos> token instead

of the user or the item. This would result in identical explanations over different

user-item pairs (see USR score in Tables 5.2, 5.3 and 5.4), making the explanations

less personalized.

To address this problem, we bridge IDs and words by designing an elegant task

called context prediction, which maps IDs onto words to be generated by the expla-

nation task. This in some way resembles one’s drafting-polishing process, where by

predicting some words the context prediction task does the job of drafting. Then,

the explanation generation task polishes these words so as to form a readable sen-

tence. Meanwhile, we demonstrate that conducting recommendation task on the
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same model is also feasible, so we name it PETER1, which stands for PErsonal-

ized Transformer for Explainable Recommendation. As we can see in Fig. 5.1(b),

when PETER generates an explanation for the same user-item pair, it can utilize

the information of both the user and the item, which illustrates the effectiveness

of our context prediction task. In addition, we show that PETER is flexible to

accommodate any number of item features that could help guide it to talk about

certain topics, e.g., “great jacket, especially for the price” for the feature “price”.

This makes it more general than the neural template approach introduced in the

previous chapter.

In what follows, we first formulate the problem in Section 5.2, and then present

our explanation generation method PETER in Section 5.3. Experimental setup and

results analysis are respectively given in Sections 5.4 and 5.5. We make a final

summary in Section 5.6.

5.2 Problem Formulation

The goal of our explanation task is to generate a natural language sentence Êu,i for

a pair of user u and item i to justify why i is recommended to u. Meanwhile, our

proposed model PETER can also make recommendations by estimating a rating r̂u,i

that predicts u’s preference towards i. At the testing stage, only user u and item

i are used as input for producing both explanation and recommendation. When

item features Fu,i are available, our model is flexible to incorporate them by simply

concatenating them at the beginning of the explanation. In this case, the features

are also needed in the testing stage. In the following, we discuss both cases.

5.3 Model Description

In this section, we present the details of our model PETER. First, we show how to

encode different types of tokens in a sequence. Then, we briefly review Transformer

1Codes available at https://github.com/lileipisces/PETER
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Figure 5.2: Our proposed model PETER that contains three tasks. The input

features are optional.

and introduce our revised attention masking matrix. At last, we formulate the

three tasks, i.e., explanation generation, context prediction and recommendation,

and integrate them into a multi-task learning framework.

5.3.1 Input Representation

We first introduce our way to encode heterogeneous input into vector representa-

tions. As shown in Fig. 5.2, the input to our model is a sequence, consisting of user

ID u, item ID i, features Fu,i, and explanation Eu,i. The user and the item serve

for the purpose of personalization, i.e., aiming to make the generated explanation

reflect both the user’s interests and the item’s attributes. The features can guide

the model to talk about certain topics. For instance, a conversational recommender

system may explain a recommendation’s specialty to the user with the goal of know-

ing more about his/her preference [25]; Or when the user himself/herself proactively

asks the recommender system to describe a key feature of a recommendation [64].

Since the features are not always available, in our experiments we test both cases

(with and without them). When they are available, the input sequence can be repre-
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The orange box highlights its difference from the Left-to-Right masking.

sented as S = [u, i, f1, · · · , f|Fu,i|, e1, · · · , e|Eu,i|], where f1, · · · , f|Fu,i| are the features

and e1, · · · , e|Eu,i| are the explanation’s word sequence. |Fu,i| denotes the number of

features and |Eu,i| is the number of words in the explanation.

Clearly there are three types of tokens in the sequence S, i.e., users, items, and

words (including features), for which we prepare three sets of randomly initialized

token embeddings U, I and V respectively, besides the positional embeddings P

that encode the position of each token in the sequence. These embeddings will be

updated via back-propagation during the training process. Notice that, we do not

add users and items to the vocabulary V , given that it costs more time to predict

a word out of the huge amount of IDs (for example, millions of users and items in

e-commerce). After performing embedding look-up, we can obtain the sequence’s to-

ken representation [u, i, f1, · · · , f|Fu,i|, e1, · · · , e|Eu,i|] and its positional representation

[p1, · · · ,p|S|], where |S| is the length of the sequence. The input representation of

the sequence is the addition of the corresponding token representation and positional

representation, denoted as S0 = [s0,1, · · · , s0,|S|].

5.3.2 Transformer and Attention Masking

To enable the three tasks, we show how to modify the attention masking mechanism

in Transformer [114]. Transformer consists of L identical layers, each of which
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is composed of two sub-layers: multi-head self-attention and position-wise feed-

forward network. The l-th layer encodes the previous layer’s output Sl−1 into Sl,

where l ∈ [1, L]. In the multi-head self-attention sub-layer, the computation of each

attention head is also identical, and among the H heads of the l-th layer, the h-th

head Al,h is computed as follows:

Al,h = softmax(
Ql,hK

>
l,h√

d
+ M)Vl,h

Ql,h = Sl−1W
Q
l,h,Kl,h = Sl−1W

K
l,h,Vl,h = Sl−1W

V
l,h

M =


0, Allow to attend

−∞, Prevent from attending

(5.3.1)

where Sl−1 ∈ R|S|×d is the (l − 1)-th layer’s output, WQ
l,h,W

K
l,h,W

V
l,h ∈ Rd× d

H are

projection matrices, d denotes the dimension of embeddings, and M ∈ R|S|×|S| is

the attention masking matrix.

Each element in M controls whether a token in the sequence can attend to

another. For example, in the unidirectional left-to-right language model [94], the

lower triangular part of M is set to 0 and the remaining part −∞, so as to allow

each token to attend to past tokens (including itself), but prevent it from attending

to future tokens. We call it Left-to-Right Masking. As our model is not limited to

the left-to-right explanation generation task, we modify the masking mechanism to

accommodate the other two tasks (i.e., context prediction and recommendation).

As shown in Fig. 5.3, the first two tokens u and i in the sequence can attend to

each other, because both context prediction and recommendation tasks need them.

To echo our model, we name it PETER Masking.

5.3.3 Explanation and Recommendation

In the following, we perform the three tasks, after obtaining the sequence’s final

representation SL = [sL,1, · · · , sL,|S|] from Transformer. The key challenge lies in

the personalization of explanation generation task, for which we design the context

prediction task. For both tasks, we apply a linear layer to the final representation of
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each token to map it onto a |V|-sized vector. As an example, after passing through

this layer, sL,t becomes ct:

ct = softmax(WvsL,t + bv) (5.3.2)

where Wv ∈ R|V|×d and bv ∈ R|V| are weight parameters. The vector ct repre-

sents the probability distribution over the vocabulary V , from which a word e with

probability cet can be sampled.

Explanation Generation: We adopt the Negative Log-Likelihood (NLL) as the

explanation task’s loss function, and compute the mean of user-item pairs in the

training set:

Le =
1

|T |
∑

(u,i)∈T

1

|Eu,i|

|Eu,i|∑
t=1

− log cet2+|Fu,i|+t (5.3.3)

where T denotes the training set. The probability cett is offset by 2 + |Fu,i| positions

because the explanation is placed at the end of the sequence, and |Fu,i| = 0 when

the features are unavailable.

At the testing stage, along with u, i, and Fu,i (if available), we feed the model a

special begin-of-sequence token <bos>. From its resulting probability distribution

c<bos>, the model can predict a word. For simplicity, among the many decoding

methods, we opt for greedy decoding that samples the word with the largest prob-

ability. Then we can concatenate this predicted word at the end of the sequence

to form a new input sequence for generating another word. We do this repeatedly

until the model produces a special end-of-sequence token <eos>, or the generated

explanation Êu,i reaches a pre-defined length.

Context Prediction: As discussed earlier, when there is only one task of expla-

nation generation, Transformer fails to make use of user ID and item ID, resulting

in identical sentences. To address this issue, we design this task to map the IDs

onto the words in the explanation, so as to build a connection between them. Since

the first two positions (u and i) of the sequence are allowed to attend to each other,

both of their final representations absorb the information of the user and the item.
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Thus, we can use either of them to perform this task. Here, we use the 2nd one for

better illustration in Fig. 5.2. Again, we adopt NLL as the loss function:

Lc =
1

|T |
∑

(u,i)∈T

1

|Eu,i|

|Eu,i|∑
t=1

− log cet2 (5.3.4)

where the words to be predicted are still those in the ground-truth explanation, but

they are predicted once for all rather than being autoregressively generated one by

one. In more details, these words are resulted from the representation corresponding

to i, which is why they are not sequentially ordered in Fig. 5.2. This would give the

IDs some rudimentary linguistic meanings, so that in the follow-up steps they could

be used for explanation generation.

Rating Prediction: Recommendation can be seen as a regression problem where

the goal is to predict a score r̂u,i based on the IDs of user u and item i. As both u and

i in the sequence can attend to each other, their final representations capture the

interaction between them. Next, we map the 1st representation sL,1 corresponding

to u into a scalar (because the 2nd one that corresponds to i is used for context

prediction). To this end, we employ multi-layer perceptron (MLP) with one hidden

layer as follows:

r̂u,i = w>r σ(WrsL,1 + br) + br (5.3.5)

where Wr ∈ Rd×d, br ∈ Rd, wr ∈ Rd and br ∈ R are weight parameters, and

σ(·) is the sigmoid function. Therefore, it can be seen that it is feasible to do

both recommendation and explanation on Transformer. For this task, we use Mean

Square Error (MSE) as the loss function:

Lr =
1

|T |
∑

(u,i)∈T

(ru,i − r̂u,i)2 (5.3.6)

where ru,i is the ground-truth rating.

Multi-task Learning: At last, we integrate the three tasks into a multi-task

learning framework whose objective function is defined as:

J = min
Θ

(λeLe + λcLc + λrLr) (5.3.7)
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Table 5.1: Statistics of the three datasets.

Yelp Amazon TripAdvisor

#users 27,147 7,506 9,765

#items 20,266 7,360 6,280

#records 1,293,247 441,783 320,023

#features 7,340 5,399 5,069

#records / user 47.64 58.86 32.77

#records / item 63.81 60.02 50.96

#words / explanation 12.32 14.14 13.01

where Θ denotes all the trainable parameters in the model, and λe, λc and λr are

regularization coefficients that balance the learning of different tasks. In this way,

the model can be trained efficiently in an end-to-end manner.

5.4 Experimental Setup

5.4.1 Datasets

For experimentation, we adopt three publicly available explainable recommendation

datasets, as well as their data splits2 [64]. During the splitting process, each dataset

is randomly divided into training, validation and testing sets with ratio 8:1:1 for 5

times, and the training set holds at least one record for each user and each item.

The three datasets are respectively from TripAdvisor (hotel), Amazon (movies &

TV) and Yelp (restaurant). Each record in the datasets is comprised of a user ID,

an item ID, a rating, an explanation, and a feature. The explanations are sentences

extracted from user reviews. Each explanation contains at least one item feature,

e.g., “bedroom”, which ensures the explanation quality. Statistics of the datasets

are shown in Table 5.1. We can see that Yelp is much larger than the other two in

2https://github.com/lileipisces/NETE
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terms of size, making it closer to the real-world situation where there are millions

of users and items.

5.4.2 Evaluation Metrics

To evaluate the recommendation performance, we adopt two commonly used met-

rics: Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). As to

explanation performance, we measure the generated explanations from two main

perspectives: text quality and explainability. For the former, we adopt BLEU [91]

in machine translation and ROUGE [75] in text summarization, and report BLEU-

1 and BLEU-4, and Precision, Recall and F1 of ROUGE-1 and ROUGE-2. Though

being widely used, BLUE and ROUGE are not flawless. For example, it is diffi-

cult for them to detect the problem of identical sentences as generated by standard

Transformer. These sentences could not be used as explanations, because they are

less likely to well explain the special property of different recommendations. To

quantitatively measure how severe the problem is, we adopt USR that computes

the Unique Sentence Ratio of generated explanations [64].

Text quality, however, is not equal to explainbility. In the case of explainable

recommendation, users may value more an explanation that justifies a recommenda-

tion’s advantages on certain features [64, 16]. To this end, we adopt the other three

metrics proposed in [64]: Feature Matching Ratio (FMR), Feature Coverage Ratio

(FCR) and Feature Diversity (DIV). FMR measures whether a generated expla-

nation contains the feature in the ground-truth. FCR is computed as the number

of distinct features contained in all the generated explanations, divided by the total

number of features in the whole dataset. DIV measures the intersection of features

between any two generated explanations.

For RMSE, MAE and DIV, the lower, the better, while it is opposite for the rest

of metrics.
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5.4.3 Compared Methods

We introduce baselines, first for explanation and then for recommendation. For the

former, we divide the baselines into two groups, depending on whether the feature

is used or not. The following models leverage only user and item IDs to generate

explanations. We denote our model without feature as PETER.

• Transformer [114] performs the explanation generation task by treating user

and item IDs as words. We also tested encoder-decoder Transformer, where

the encoder encodes the IDs for the decoder to decode, but its results turned

out to be the same, so we do not report it.

• NRT [70] can predict a rating and generate a tip simultaneously based on user

and item IDs. We take the explanations in the datasets as tips. Moreover, we

found that the model’s problem of generating identical sentences (as discussed

in [64]) is caused by the L2 regularization in its original design3. For fair

comparison, we removed it.

• Att2Seq [31] is a review generation approach and we take the explanations

as reviews. This model has an attention module, but we found that it makes

the generated text unreadable. To be fair, we removed it as well.

When features are used, we denote our model as PETER+, and compare it with

two recent models:

• ACMLM [90] is a fine-tuned BERT [30], where an attention layer is intro-

duced to encode the features from both the user and the item. By predicting

masked tokens, this model can produce diverse sentences.

• NETE [64] is a tailored GRU [27] that incorporates a given feature into the

decoding process to generate template-like explanations. It can also make

recommendations.
3We found out that the L2 regularization in NRT’s implementation is actually λ||Θ||, but λ||Θ||2

was reported, where Θ denotes all model parameters and λ = 10−4.
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For recommendation, besides NRT and NETE, we include another two tradi-

tional methods:

• PMF [88] is a standard probabilistic matrix factorization method that char-

acterizes users and items by latent factors.

• SVD++ [56] leverages a user’s interacted items to enhance the latent factors.

5.4.4 Implementation Details

We train each model on the training set, tune the hyper-parameters on the validation

set, and report the performance on the testing set. The results are averaged on the

5 data splits. We adopt the codes of ACMLM and NETE, and implement all the

other methods. For NRT, Att2Seq, NETE and our PETER and PETER+, we set

the size of vocabulary to 20,000 by keeping the most frequent words. We do not

apply this to Transformer, otherwise users and items (regarded as words) may be

filtered out. We set both the number of context words and the length of explanations

to 15, because the mean length of explanations is approximately 13 (see Table 5.1).

ACMLM adopts sub-words, so we do not apply the above two steps to it. We reuse

the other default settings of the baselines.

For Transformer, PETER and PETER+, we set the embedding size d to 512 and

the dimension of feed-forward network to 2,048, following [114], but the number of

layers L and attention heads H are both 2. For our models PETER and PETER+,

we set the regularization coefficients λe, λc and λr to 1.0, 1.0 and 0.1, respectively.

We optimize the model via stochastic gradient descent [102], and apply gradient

clipping [92] with a threshold of 1.0. The batch size is set to 128, and the learning

rate 1.0. At each epoch, we save the model if it achieves the lowest loss on the

validation set, but when there is no improvement, we decrease the learning rate by

a factor of 0.25. When the latter happens for 5 times, we stop training and load the

saved model for prediction.
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5.5 Results and Analysis

5.5.1 Quantitative Analysis on Explanations

In Tables 5.2, 5.3 and 5.4, we compare the performance of explanation generation

methods in two groups. We first analyze models that make use of item features

(i.e., ACMLM, NETE and PETER+). Our PETER+ consistently and significantly

outperforms ACMLM and NETE on the three datasets in terms of text quality

(BLEU and ROUGE). This shows the effectiveness of our model in generating high-

quality sentences. Notice that a user survey was conducted in [62] and reported that

NETE’s explanations were perceived useful by most participants. It suggests that

our model’s explanations with better quality could also be very useful to real users.

Again, in terms of text quality, the performance gap between PETER+ and

ACMLM (a fine-tuned BERT) is extremely large, because the latter’s generation is

achieved by predicting masked tokens, which is quite different from auto-regressive

generation. This may explain why ACMLM produces diverse sentences (high USR),

which, however, is less meaningful when text quality cannot be guaranteed. Fur-

thermore, PETER+ beats both ACMLM and NETE on the explainability metric

FMR that cares about whether a generated explanation mentions the feature in the

ground-truth. This is quite useful in real-world applications when the system is asked

to explain a particular feature. Regarding the other two explainability metrics FCR

and DIV, PETER+ is also very competitive. ACMLM gains better performance on

some cases, because at the training stage it is exposed to more features (from both

the user and the item), which is unfair to both PETER+ and NETE.

Next, we discuss the results of the models that only leverage user and item IDs

for generation. As it can be seen, Transformer generates identical explanations on

each dataset, resulting in nearly 0 score on Unique Sentence Ratio (USR). Owing to

the context prediction task, our PETER successfully addresses this issue, producing

diverse (comparable USR) and high-quality (best BLEU-4) sentences. In particular,

on the largest dataset Yelp, it achieves the best performance on most of the metrics.
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Table 5.5: Efficiency comparison of two Transformer-based models in terms of

training minutes on the TripAdvisor dataset, tested on NVIDIA Tesla P40.

Time Epochs Time/Epoch

ACMLM 97.0 3 32.3

PETER+ 57.7 25 2.3

This again demonstrates the effectiveness of our model. On Amazon and TripAdvi-

sor, NRT and Att2Seq are very competitive, because we fixed their generation issues

(see Section 5.4.3). In addition, the two datasets are small and thus the training

samples are limited, so our model may underfit, which is why it does not always

reach the best performance.

Besides explanation performance, we also investigate the efficiency of different

Transformer-based models. On the same machine (NVIDIA Tesla P40) and dataset

(TripAdvisor), we compare the training minutes of ACMLM and our PETER+ in

Table 5.5. Compared with ACMLM, our model takes less time to train (2.3 minutes

per epoch), since it has only 2 layers and thus less parameters. But because it is

unpretrained and learned from scratch, it needs more training epochs.

5.5.2 Qualitative Case Study on Explanations

In Table 5.6, we present two examples generated by PETER and PETER+ on the

TripAdvisor dataset. We can see that PETER generates distinct context words

and explanations for different user-item pairs. This confirms that our proposed

solution can indeed endow the user and item IDs with linguistic meanings, as well as

achieving certain degree of personalization for natural language generation. Among

the commonly used context words, e.g., “the”, there are some important features

(underlined), according to which the model then generates an explanation that talks

about them. Admittedly, there is still much room for improvement of the context

prediction task, so as to more accurately predict the features in the ground-truth
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Table 5.6: Context words and explanations on two different cases as generated

by our PETER and PETER+ on TripAdvisor dataset. The boldfaced words in the

ground-truth are the key features. Generated features are underlined.

Top-15 Context Words Explanation

Ground-truth the rooms are spacious and

the bathroom has a large tub

PETER <eos> the and a pool was with

nice is very were to good in of

the pool area is nice and the

gym is very well equipped

<eos>

PETER+ <eos> the and a was pool with

to nice good very were is of in

the rooms were clean and

comfortable <eos>

Ground-truth beautiful lobby and nice bar

PETER <eos> the and a was were sepa-

rate bathroom with shower large

very had in is

the bathroom was large and

the shower was great <eos>

PETER+ <eos> the and a was bathroom

shower with large in separate

were room very is

the lobby was very nice and

the rooms were very comfort-

able <eos>

(e.g., “rooms” vs. “pool” in the first example). One alternative is to leverage the

features to guide the model’s generation. This explains why PETER+ is able to

generate an explanation that talks about “rooms” rather than “pool”, making it

semantically closer to the ground-truth. It thus demonstrates our model’s flexibility

in incorporating these features.

5.5.3 Recommendation Performance

Table 5.7 presents the performance comparison of different recommendation meth-

ods. On the largest dataset Yelp with approximately 1.3 million records, our model
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Table 5.7: Recommendation performance comparison in terms of RMSE and MAE. The

best performing values are boldfaced.

Yelp Amazon TripAdvisor

RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓

PMF 1.0856 0.8765 1.0344 0.8072 0.8703 0.6961

SVD++ 1.0112 0.7845 0.9649 0.7185 0.7981 0.6095

NRT 1.0123 0.7842 0.9499 0.7046 0.7918 0.6094

NETE 1.0097 0.7889 0.9608 0.7269 0.7916 0.6079

PETER 1.0130 0.7839 0.9533 0.7056 0.8073 0.6253

PETER performs as good as the three competitive baselines (i.e., SVD++, NRT

and NETE), which shows the rationale of our recommendation module. Since our

model PETER has more parameters to learn, it may underfit on small datasets.

This explains why it does not always perform the best on TripAdvisor and Amazon.

When more training data are available to Transformer, usually the performance will

become better, as evidenced by GPT-2 [95] and GPT-3 [10]. Thus, we can expect

our model to perform well in real-world applications, where the training data are

bigger than the testing datasets, e.g., billion-scale users in Amazon.

5.5.4 Ablation Study

In Table 5.8, we provide an ablation study conducted on the TripAdvisor dataset.

After disabling the context prediction task Lc by setting λc = 0, the performances

of both explainability and text quality drop dramatically, and the unique sentence

ratio (USR) is nearly approaching Transformer’s (see Tables 5.2, 5.3 and 5.4). It

hence confirms this task’s effectiveness. As Lc is highly correlated with the recom-

mendation task Lr via the user and item IDs (see Section 5.3.3), the removal of Lc

leads to slight improvement on recommendation performance. We can also observe

a reversed phenomenon when we disable Lr. When PETER masking is replaced by
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Table
5.8:

Ablation
study

on
the

smallest
dataset

TripAdvisor.
Arrows

↑
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↓
respectively

denote
the

performance
increase
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the Left-to-Right masking that prevents the model from accessing the item informa-

tion, the recommendation performance drops sharply. Overall, PETER reaches an

optimal situation, where its explainability, text quality and recommendation perfor-

mance are all reasonably good.

5.6 Summary

In this chapter, we propose a simple and effective solution to address the personal-

ized generation problem of Transformer, unleashing its language modeling power to

generate explanations for recommender systems. Extensive experiments show that

the solution is both effective and efficient. It opens up a new way of exploiting

Transformer by designing good tasks instead of scaling up model size. There are

various applications of personalized generation for which Transformer is still less ex-

plored, e.g., personalized conversational agents. It is also promising to incorporate

item images into the model, so as to generate visual explanations for recommenda-

tions, since “a picture is worth a thousand words”. Another meaningful extension

is to adapt the model to cross-lingual explanation generation, because international

platforms, e.g., Amazon, may serve users who speak different languages.
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Chapter 6

Explanation Ranking

6.1 Background

In the proceeding two chapters, we introduced two natural language explanation

generation approaches. Although they can produce high-quality explanations, this

type of approach is not flawless. For example, in our previous experiments [64, 67] we

observe that a large amount of generated explanations are commonly seen sentences

in the training data, e.g., “the food is good” as an explanation for a recommended

restaurant. This means that the models are fitting the given samples rather than

creating new sentences. Moreover, even strong language models such as Transformer

[114] trained on a large text corpus may generate contents that deviate from facts,

e.g., “four-horned unicorns” [95].

To tackle this problem, we wonder whether explanations could be ranked, just

as information retrieval systems that assume the available contents (e.g., documents

or images) are correct, and intelligently rank them according to a given query. The

basic idea of explanation ranking is to train a model that can select appropriate

explanations from an explanation pool for a recommendation, which is different from

natural language explanation generation approaches that generate explanations by

learning the pattern from training data. The ranking formulation also makes the

standard evaluation of explanations possible, via ranking metrics, such as NDCG,

Precision and Recall. Moreover, the ranking formulation can accommodate various
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Figure 6.1: Three user reviews for different restaurants from Yelp. Sentences

that can be used as explanations are highlighted in colors. Co-occurring

explanations across different reviews are highlighted in rectangles.

explanation styles, such as sentences, images, and even new styles yet to be invented,

as long as user-item-explanation interactions are available.

However, since such interactions are usually unavailable in existing recommender

systems, the key challenge then becomes how to create them. As inspired by the

wisdom of the crowd, our solution is to extract co-occurring components that can

be used as explanations from user-item interactions. As an instantiation, we extract

sentences (in rectangles in Fig. 6.1) across different user reviews, because they reflect

users’ authentic evaluation towards items. By finding the commonly used sentences,

the quality of explanations such as readability and expressiveness can be guaranteed.

A follow-up problem is how to efficiently detect the nearly identical sentences across

reviews in a dataset. Computing the similarity between any two sentences in a

dataset is feasible but less efficient, since it has a quadratic time complexity. To

make this process more efficient, we develop a method that can categorize sentences

into different groups, based on Locality Sensitive Hashing (LSH) [96] which is devised

for near-duplicates detection. We create three benchmark datasets, and name them

EXTRA1, which stands for EXplanaTion RAnking.

With the evaluation and data, we further investigate the potential impacts of

explanations, such as higher chance of item click, conversion or fairness [108], which

1Codes and datasets available at https://github.com/lileipisces/EXTRA
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are less explored but are particularly important in commercial systems. Without

an appropriate approach to explanation evaluation, explanations have usually been

modeled as an auxiliary function of the recommendation task in most explainable

models [133, 14, 105, 80, 24]. A recent study [23] shows that fine-tuning the parallel

task of feature ranking can boost the recommendation performance. Moreover, it

has been shown in a user study that users’ feedback on explanation items could

help to improve recommendation performance [39]. Based on these findings, we

design an item-explanation joint-ranking framework to study if showing some par-

ticular explanations could lead to increased item acceptance rate, i.e., improving

the recommendation performance. Furthermore, we are motivated to identify how

the recommendation task and the explanation task would interact with each other,

whether there is a trade-off between them, and how to achieve the most ideal solution

for both.

However, the above investigation cannot proceed without addressing the inher-

ent data sparsity issue in the user-item-explanation interactions. In traditional

pair-wise data, each user may be associated with several items, but in the user-

item-explanation triplets data, each user-item pair may be associated with only one

explanation. In consequence, the data sparsity problem is severer for explanation

ranking. Therefore, how to design an effective model for such one-shot learning sce-

nario becomes a great challenge. Our solution is to separate user-item-explanation

triplets into user-explanation and item-explanation pairs, which significantly allevi-

ates the data sparsity problem. Based on this idea, we design two types of model2.

First, a general model that only makes use of IDs, aims to accommodate a variety of

explanation styles, such as sentences and images. Second, a domain-specific model

based on BERT [30] further leverages the semantic features of the explanations to

enhance the ranking performance.

In the following, we first formulate the problems in Section 6.2. Then, our pro-

posed models and the joint-ranking framework are presented in Section 6.3. The

2Codes available at https://github.com/lileipisces/BPER
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data creation approach is given in Section 6.4. Section 6.5 introduces the experi-

mental setup, and the discussion of results is provided in Section 6.6. We summarize

this chapter in Section 6.7.

6.2 Problem Formulation

The key notations and concepts for the problems are presented in Table 6.1. We

use U to denote the set of all users, I the set of all items and E the set of all

explanations. Then the historical interaction set is given by T ⊆ U × I × E . In the

following, we first introduce item ranking and explanation ranking respectively, and

then the item-explanation joint-ranking.

6.2.1 Item Ranking

Personalized recommendation aims at providing a user with a ranked list of items

that he/she never interacted with before. For each user u ∈ U , the list of M items

can be generated as follows,

Top(u,M) :=
M

arg max
i∈I/Iu

r̂u,i (6.2.1)

where r̂u,i is the predicted score for a user u on item i, and I/Iu denotes the set

of items on which user u has no interactions. In Eq. (6.2.1), i is underlined, which

means that we aim to rank the items.

6.2.2 Explanation Ranking

Meanwhile, explanation ranking is the task of finding a list of appropriate expla-

nations for a user-item pair to justify why the recommendation is made. Formally,

given a user u ∈ U and an item i ∈ I, the goal of this task is to rank the entire

collection of explanations E , and then select the top N to reason why item i is

recommended. Specifically, we define this list of top N explanations as:

Top(u, i,N) :=
N

arg max
e∈E

r̂u,i,e (6.2.2)
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Table 6.1: Key notations and concepts.

Symbol Description

T training set

U set of users

I set of items

Iu set of items that user u preferred

E set of explanations

Eu set of user u’s explanations

Ei set of item i’s explanations

Eu,i set of explanations that user u preferred w.r.t. item i

P latent factor matrix for users

Q latent factor matrix for items

O latent factor matrix for explanations

pu latent factors of user u

qi latent factors of item i

oe latent factors of explanation e

bi bias term of item i

be bias term of explanation e

d dimension of latent factors

α, λ regularization coefficient

γ learning rate

T iteration number

M number of recommendations for each user

N number of explanations for each recommendation

r̂u,i score predicted for user u on item i

r̂u,i,e score predicted for user u on explanation e of item i
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where r̂u,i,e is the estimated score of explanation e for a given user-item pair (u, i),

which could be given by a recommendation model or by the user’s true behavior.

6.2.3 Item-Explanation Joint-Ranking

The preceding two tasks solely rank either items or explanations. In this task, we

further investigate whether it is possible to find an ideal item-explanation pair for a

user, to whom the explanation best justifies the item that he/she likes the most. To

this end, we treat each item-explanation pair as a joint unit, and then rank these

units. Specifically, for each user u ∈ U , a ranked list of M item-explanation pairs

can be produced as follows,

Top(u,M) :=
M

arg max
i∈I/Iu,e∈E

r̂u,i,e (6.2.3)

where r̂u,i,e is the predicted score for a given user u on the item-explanation pair (i,

e).

We see that either item ranking task or explanation ranking task is a special case

of this item-explanation joint-ranking task. Concretely, Eq. (6.2.3) degenerates to

Eq. (6.2.1) when explanation e is fixed, while it reduces to Eq. (6.2.2) if item i is

already known.

6.3 Framework Description

6.3.1 Joint-Ranking Reformulation

Suppose we have an ideal model that can perform the aforementioned joint-ranking

task. During the prediction stage as in Eq. (6.2.3), there would be |I|×|E| candidate

item-explanation pairs to rank for each user u ∈ U . The runtime complexity is then

O(|U| · |I| · |E|), which makes this task impractical, compared with the traditional

recommendation task’s O(|U| · |I|) complexity.

To reduce the complexity, we reformulate the joint-ranking task by performing

ranking for items and explanations simultaneously but separately. In this way, we
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are also able to investigate whether item ranking and explanation ranking could

influence each other, e.g., improving the performance of both. Specifically, during

the testing stage, we first follow Eq. (6.2.1) to rank items for each user u ∈ U , which

has the runtime complexity of O(|U| · |I|). After that, for M recommendations for

each user, we rank and select explanations to justify each of them according to Eq.

(6.2.2). The second step’s complexity is O(|U| ·M · |E|), but since M is a constant

and |E| � |I| (see Table 6.2), the overall complexity of the two steps is O(|U| · |I|).

In the following, we first analyze the drawback of a conventional Tensor Fac-

torization (TF) model, when it is applied to the explanation ranking problem, and

then introduce our solution BPER. Second, we show how to further enhance BPER

by utilizing the semantic features of textual explanations (denoted as BPER+).

Third, we illustrate their relation to two typical TF methods CD and PITF. At last,

we integrate the explanation ranking with item ranking into a multi-task learning

framework as a joint-ranking task.

6.3.2 Bayesian Personalized Explanation Ranking (BPER)

To perform explanation ranking, the score r̂u,i,e on each explanation e ∈ E for a

given user-item pair (u, i) must be estimated. As the user-item-explanation ternary

relations T = {(u, i, e)|u ∈ U , i ∈ I, e ∈ E} form an interaction cube, we are

inspired to employ factorization models to predict the scores. There are a num-

ber of tensor factorization techniques, such as Tucker Decomposition (TD) [113],

Canonical Decomposition (CD) [12] and High Order Singular Value Decomposition

(HOSVD) [29]. Intuitively, one would adopt CD, because of its linear runtime com-

plexity in terms of both training and prediction [99] and its close relation to Matrix

Factorization (MF) [88] that has been extensively studied in recent years for item

recommendation. Formally, according to CD, the score r̂u,i,e of user u on item i’s

explanation e can be estimated by the sum over the element-wise multiplication of
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the user’s latent factors pu, the item’s qi and the explanation’s oe:

r̂u,i,e = (pu � qi)
>oe =

d∑
k=1

pu,k · qi,k · oe,k (6.3.4)

where � denotes the element-wise multiplication of two vectors.

However, this method may not be effective enough due to the inherent sparsity

problem of the ternary data. Since each user-item pair (u, i) in the training set T is

unlikely to have interactions with many explanations in E , the data sparsity prob-

lem for explanation ranking is severer than that for item recommendation. Simply

multiplying the three vectors would hurt the performance of explanation ranking,

which is evidenced by our experimental results in Section 6.6.

To mitigate such an issue and to improve the effectiveness of explanation ranking,

we propose to separately estimate the user u’s preference score r̂u,e on explanation

e and the item i’s appropriateness score r̂i,e for explanation e. To this end, we

perform two sets of matrix factorization, rather than employing one single TF model.

In this way, the sparsity problem would be considerably alleviated, since the data

are reduced to two collections of binary relations, both of which are similar to the

case of item recommendation. At last, the two scores r̂u,e and r̂i,e are combined

linearly through a hyper-parameter µ. Specifically, the score of user u for item i on

explanation e is predicted as follows,
r̂u,e = p>u o

U
e + bUe =

∑d
k=1 pu,k · oUe,k + bUe

r̂i,e = q>i o
I
e + bIe =

∑d
k=1 qi,k · oIe,k + bIe

r̂u,i,e = µ · r̂u,e + (1− µ) · r̂i,e

(6.3.5)

where {oUe , bUe } and {oIe, bIe} are two different sets of latent factors for explanations,

corresponding to users and items respectively.

Since selecting explanations that are likely to be perceived helpful by users is

inherently a ranking-oriented task, directly modeling the relative order of expla-

nations is thus more effective than simply predicting their absolute scores. The

Bayesian Personalized Ranking (BPR) criterion [98] meets such an optimization re-

quirement. Intuitively, a user would be more likely to appreciate explanations that
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cater to his/her own preferences, while those that do not fit one’s interests would be

less attractive to the user. Similarly, some explanations might be more suitable to

describe certain items, while other explanations might not. To model such type of

pair-wise preferences, we compute the difference between two explanations for both

user u and item i as follows,  r̂u,ee′ = r̂u,e − r̂u,e′

r̂i,ee′′ = r̂i,e − r̂i,e′′
(6.3.6)

which respectively reflect user u’s interest in explanation e over e′, and item i’s

appropriateness for explanation e over e′′.

With the scores r̂u,ee′ and r̂u,ee′′ , we then adopt the BPR criterion [98] to minimize

the following objective function:

min
Θ

∑
u∈U

∑
i∈Iu

∑
e∈Eu,i

[ ∑
e′∈E/Eu

− lnσ(r̂u,ee′) +
∑

e′′∈E/Ei

− lnσ(r̂i,ee′′)
]

+ λ ||Θ||2F (6.3.7)

where σ(·) denotes the sigmoid function, Iu represents the set of items that user u

has interacted with, Eu,i is the set of explanations in the training set for the user-

item pair (u, i), E/Eu and E/Ei respectively correspond to explanations that user

u and item i have not interacted with, Θ is the model parameter, and λ is the

regularization coefficient.

From Eq. (6.3.7), we can see that there are two explanation tasks to be learned

respectively, corresponding to users and items. During the training stage, we allow

them to be equally important, since we have a hyper-parameter µ in Eq. (6.3.5)

to balance their importance during the testing stage. The effect of this parameter

is studied in Section 6.6.1. After the model parameters are estimated, we rank

explanations according to Eq. (6.2.2) for each user-item pair in the testing set. As we

model the explanation ranking task under BPR criterion, we accordingly name our

method Bayesian Personalized Explanation Ranking (BPER). To learn the model

parameter Θ, we draw on the widely used stochastic gradient descent algorithm

to optimize the objective function in Eq. (6.3.7). Specifically, we first randomly

initialize the parameters, and then repeatedly update them by uniformly taking
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samples from the training set and computing the gradients w.r.t. the parameters,

until the convergence of the algorithm. The complete learning steps are shown in

Algorithm 1.

Algorithm 1 Bayesian Personalized Explanation Ranking (BPER)
Input: training set T , dimension of latent factors d, learning rate γ, regularization

coefficient λ, iteration number T

Output: model parameter Θ = {P,Q,OU ,OI ,bU ,bI}

1: Initialize Θ, including P ← R|U|×d, Q ← R|I|×d, OU ← R|E|×d,OI ←

R|E|×d,bU ← R|E|,bI ← R|E|

2: for t1 = 1 to T do

3: for t2 = 1 to |T | do

4: Uniformly draw (u, i, e) from T , e′ from E/Eu, and e′′ from E/Ei

5: r̂u,ee′ ← r̂u,e − r̂u,e′ , r̂i,ee′′ ← r̂i,e − r̂i,e′′

6: x← −σ(−r̂u,ee′), y ← −σ(−r̂i,ee′′)

7: pu ← pu − γ · (x · (oUe − oUe′) + λ · pu)

8: qi ← qi − γ · (y · (oIe − oIe′′) + λ · qi)

9: oUe ← oUe − γ · (x · pu + λ · oUe ), oUe′ ← oUe′ − γ · (−x · pu + λ · oUe′)

10: oIe ← oIe − γ · (y · qi + λ · oIe), oIe′′ ← oIe′′ − γ · (−y · qi + λ · oIe′′)

11: bUe ← bUe − γ · (x+ λ · bUe ), bUe′ ← bUe′ − γ · (−x+ λ · bUe′)

12: bIe ← bIe − γ · (y + λ · bIe), bIe′′ ← bIe′′ − γ · (−y + λ · bIe′′)

13: end for

14: end for

6.3.3 BERT-enhanced BPER (BPER+)

The BPER model only exploits the IDs of users, items and explanations to infer their

relation for explanation ranking. However, this makes the rich semantic features

of the explanations, which could also capture the relation between explanations,

under-explored. For example, “the acting is good” and “the acting is great” both

convey a positive sentiment with a similar meaning, so their ranks are expected to
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be close. Hence, we further investigate whether such features could help to enhance

BPER. As a feature extractor, we opt for BERT [30], a well-known pre-trained

language model, whose effectiveness has been demonstrated on a wide range of

natural language understanding tasks. Specifically, we first add a special [CLS] token

at the beginning of a textual explanation e, e.g., “[CLS] the acting is great”. After

passing it through BERT, we obtain the aggregate representation (corresponding to

[CLS]) that encodes the explanation’s overall semantics. To match the dimension

of latent factors in our model, we apply a linear layer to this vector, resulting in

oBERTe . Then, we enhance the two ID-based explanation vectors oUe and oIe in Eq.

(6.3.5) by multiplying oBERTe , resulting in oU+
e and oI+e .

 oU+
e = oUe � oBERTe

oI+e = oIe � oBERTe

(6.3.8)

To predict the score for (u, i, e) triplet, we replace oUe and oIe in Eq. (6.3.5)

with oU+
e and oI+e . Then we use Eq. (6.3.7) as the objective function, which can

be optimized via back-propagation. In Eq. (6.3.8), we adopt the multiplication

operation simply to verify the feasibility of incorporating semantic features. The

model may be further improved by more sophisticated operations, e.g., multi-layer

perceptron (MLP).

Notice that, BPER is a general method that only requires the IDs of users,

items and explanations, which makes it very flexible when being adapted to other

explanation styles (e.g., images [22]), whereas BPER+ is a domain-specific method

that considers the semantic features extracted from textual explanations, so it could

better perform ranking. As the first work on ranking explanations for recommen-

dations, we opt to make both methods relatively simple for reproducibility purpose.

In this way, it is also easy to observe the experimental results (such as the impact of

explanation task on recommendation task), without the interference of other factors.
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6.3.4 Relation between BPER, BPER+, CD, and PITF

In fact, our Bayesian Personalized Explanation Ranking (BPER) model is a type

of Tensor Factorization (TF), so we analyze its relation to two closely related TF

methods: Canonical Decomposition (CD) [12] and Pairwise Interaction Tensor Fac-

torization (PITF) [99]. On one hand, in theory BPER can be considered as a special

case of the CD model. Suppose the dimensionality of BPER is 2 · d + 2, we can

reformulate it as CD in the following,

pCDu,k =


µ · pu,k, if k ≤ d

µ, else

qCDi,k =


(1− µ) · qi,k, if k > d and k ≤ 2 · d

1− µ, else

oCDe,k =



oUe,k, if k ≤ d

oIe,k, else if k ≤ 2 · d

bUe , else if k = 2 · d+ 1

bIe, else

(6.3.9)

where the parameter µ is a constant.

On the other hand, PITF can be seen as a special case of our BPER. Formally, its

predicted score r̂u,i,e for the user-item-explanation triplet (u, i, e) can be calculated

by:

r̂u,i,e = p>u o
U
e + q>i o

I
e =

d∑
k=1

pu,k · oUe,k +
d∑

k=1

qi,k · oIe,k (6.3.10)

We can see that our BPER degenerates to PITF if in Eq. (6.3.5) we remove

the bias terms bUe and bIe and set the hyper-parameter µ to 0.5, which means that

the two types of scores for users and items are equally important to the explanation

ranking task.

Although CD is more general than our BPER, its performance may be affected

by the data sparsity issue. Our BPER could mitigate this problem given its explic-

itly designed structure that may be difficult for CD to learn from scratch. When
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(a) Our Bayesian Personalized Explana-

tion Ranking (BPER)

(b) Our BERT-enhanced BPER (BPER+)

(c) Canonical Decomposition

(CD)

(d) Pairwise Interaction Tensor

Factorization (PITF)

Figure 6.2: Comparison of Tensor Factorization models. The three matrices

(i.e., P, Q, O) are model parameters. Our BPER and BPER+ can be regarded as

special cases of CD, while PITF can be seen as a special case of our BPER and

BPER+.

comparing with PITF, we can find that the parameter µ in BPER is able to balance

the importance of the two types of scores, corresponding to users and items, which

makes our BPER more expressive than PITF and hence likely reach better ranking

quality.

In a similar way, BPER+ can also be rewritten as CD or PITF. Concretely, by

revising the last part of Eq. (6.3.9) as the following formula, BPER+ can be seen

as CD. When oBERTe = [1, ..., 1]>, BPER+ is equal to BPER, so it can be easily

converted into PITF. The graphical illustration of the four models is shown in Fig.

6.2.

oCDe,k =



oUe,k · oBERTe,k , if k ≤ d

oIe,k · oBERTe,k , else if k ≤ 2 · d

bUe , else if k = 2 · d+ 1

bIe, else

(6.3.11)
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6.3.5 Joint-Ranking on BPER (BPER-J)

Owing to BPER’s flexibility to accommodate various explanation styles as discussed

before, we perform the joint-ranking on it. Specifically, we incorporate the two tasks

of explanation ranking and item recommendation into a unified multi-task learning

framework, so as to find a good solution that benefits both of them.

For recommendation, we adopt Singular Value Decomposition (SVD) model [57]

to predict the score r̂u,i of user u on item i:

r̂u,i = p>u qi + bi =
d∑

k=1

pu,k · qi,k + bi (6.3.12)

where bi is the bias term for item i. Notice that, the latent factors pu and qi

are shared with those for explanation ranking in Eq. (6.3.5). In essence, item

recommendation is also a ranking task that can be optimized using BPR criteria

[98], so we first compute the preference difference r̂u,ii′ between a pair of items i and

i′ to a user u as follows,

r̂u,ii′ = r̂u,i − r̂u,i′ (6.3.13)

which can then be combined with the task of explanation ranking in Eq. (6.3.7) to

form the following objective function for joint-ranking:

min
Θ

∑
u∈U

∑
i∈Iu

[ ∑
i′∈I/Iu

− lnσ(r̂u,ii′) + α
∑
e∈Eu,i

( ∑
e′∈E/Eu

− lnσ(r̂u,ee′) +
∑

e′′∈E/Ei

− lnσ(r̂i,ee′′)
)]

+ λ ||Θ||2F
(6.3.14)

where the parameter α can be fine-tuned to balance the learning of the two tasks.

We name this method BPER-J where J stands for joint-ranking. Similar to

BPER, we can update each parameter of BPER-J via stochastic gradient descent

(see Algorithm 2).
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Algorithm 2 Joint-Ranking on BPER (BPER-J)
Input: training set T , dimension of latent factors d, learning rate γ, regularization

coefficients α and λ, iteration number T

Output: model parameter Θ = {P,Q,OU ,OI ,b,bU ,bI}

1: Initialize Θ, including P← R|U|×d, Q← R|I|×d, OU ← R|E|×d,OI ← R|E|×d,b←

R|I|,bU ← R|E|,bI ← R|E|

2: for t1 = 1 to T do

3: for t2 = 1 to |T | do

4: Uniformly draw (u, i, e) from T , e′ from E/Eu, e′′ from E/Ei, and i′ from

I/Iu

5: r̂u,ee′ ← r̂u,e − r̂u,e′ , r̂i,ee′′ ← r̂i,e − r̂i,e′′ , r̂u,ii′ ← r̂u,i − r̂u,i′

6: x← −α · σ(−r̂u,ee′), y ← −α · σ(−r̂i,ee′′), z ← −σ(−r̂u,ii′)

7: pu ← pu − γ · (x · (oUe − oUe′) + z · (qi − qi′) + λ · pu)

8: qi ← qi − γ · (y · (oIe − oIe′′) + z · pu + λ · qi)

9: qi′ ← qi′ − γ · (−z · pu + λ · qi′)

10: oUe ← oUe − γ · (x · pu + λ · oUe )

11: oUe′ ← oUe′ − γ · (−x · pu + λ · oUe′)

12: oIe ← oIe − γ · (y · qi + λ · oIe)

13: oIe′′ ← oIe′′ − γ · (−y · qi + λ · oIe′′)

14: bi ← bi − γ · (z + λ · bi)

15: bi′ ← bi′ − γ · (−z + λ · bi′)

16: bUe ← bUe − γ · (x+ λ · bUe )

17: bUe′ ← bUe′ − γ · (−x+ λ · bUe′)

18: bIe ← bIe − γ · (y + λ · bIe)

19: bIe′′ ← bIe′′ − γ · (−y + λ · bIe′′)

20: end for

21: end for
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(a) Naive way
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Figure 6.3: Comparison between a naive way and our more efficient approach for

sentence grouping. White cells denote similarity computation, while blue cells

omit the computation. (a) shows the naive way to compute the similarity between

any two sentences, which would take quadratic time. (b)-(e) show four example

steps in our more efficient sentence grouping algorithm, where green rectangles

denote query steps in LSH, and M denotes the matched duplicates.

6.4 Construction of User-Item-Explanation Interac-

tions

For explanation ranking purpose, the datasets are expected to contain user-item-

explanation interactions. We narrow down to the explanation sentences extracted

from user reviews. The key problem lies in how to efficiently detect near-duplicates

across different reviews, since it takes quadratic time to compute the similarity

between any two sentences in a dataset. In the following, we present our approach
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to finding duplicate sentences based on sentence grouping.

The advantage of sentence grouping is three-fold. First, it ensures the readability

and expressiveness of the explanations, as they are extracted from real users’ reviews

based on the wisdom of the crowd. Second, it allows the explanations to be connected

with both users and items, so that we can design collaborative filtering models

to learn and predict such connections. Third, it makes explanation ranking and

the automatic benchmark evaluation possible, since there are only a limited set of

candidate explanations.

Computing the similarity between any two sentences in a dataset is computation-

ally expensive. However, at each step of sentence grouping, it is actually unnecessary

to compute the similarity for the already grouped sentences. Therefore, we can re-

duce the computation cost by removing those sentences (see Fig. 6.3 (b)-(e) for

illustration). To find similar sentences more efficiently, we make use of Locality

Sensitive Hashing (LSH) [96], which is able to conduct near-duplicate detection in

sub-linear time. LSH consists of three major steps. First, a document (i.e., a sen-

tence in our case) is converted into a set of n-shingles (a.k.a., n-grams). Second,

the sets w.r.t. all documents are converted to short signatures via hashing, so as

to reduce computation cost and meanwhile preserve document similarity. Third,

the documents, whose similarity to a query document is greater than a pre-defined

threshold, are returned. The detailed procedure of sentence grouping is shown in

Algorithm 3.

Next, we discuss the implementation details. To make better use of all the

available text in a dataset, for each record we concatenate the review text and the

heading/tip. Then each piece of text is tokenized into sentences. In particular, a

sentence is removed if it contains personal pronouns, e.g., “I” and “me”, since expla-

nations are expected to be more objective than subjective. We also calculate the

frequency of nouns and adjectives in each sentence via NLTK3, and only keep the

sentences that contain both noun(s) and adjective(s), so as to obtain more informa-

3https://www.nltk.org
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Algorithm 3 Sentence Grouping via Locality-Sensitive Hashing (LSH)
Input: shingle size n, similarity threshold t, minimum group size g

Output: explanation set E , groups of sentencesM

1: Pre-process textual data to obtain the sentence collection S

2: lsh←MinHashLSH(t), C ← ∅

3: for sentence s in S do

4: m←MinHash() // create MinHash for s

5: for n-shingle h in s do

6: m.update(h) // convert s into m by encoding its n-shingles

7: end for

8: lsh.insert(m), C.add(m) // C: set of all sentences’ MinHash

9: end for

10: M← ∅, Q ← ∅ // Q: set of queried sentences

11: for m in C do

12: if m not in Q then

13: G ← lsh.query(m) // G: ID set of duplicate sentences

14: if G.size > g then

15: M.add(G) // only keep groups with enough sentences

16: E .add(G.get()) // keep one explanation in each group

17: end if

18: for m′ in G do

19: lsh.remove(m′), Q.add(m′) // for efficiency

20: end for

21: end if

22: end for
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tive explanations that evaluate certain item features. After the data pre-processing,

we conduct sentence grouping via an open-source LSH [96] package Datasketch4.

Notice that, we apply it to all sentences in a dataset, rather than that of a partic-

ular item, because it is easier to find common expressions from a large amount of

sentences. When creating MinHash for each sentence, we set the shingle size n to

2 so as to preserve the word ordering and meanwhile distinguish positive sentiment

from negative sentiment (e.g., “is good” v.s. “not good”). We test the similarity

threshold t of querying sentences from [0.5, 0.6, ..., 0.9], and find that the results

with 0.9 are the best.

6.5 Experimental Setup

6.5.1 Datasets

We construct our datasets on three domains: Amazon Movies & TV5 (movie), Tri-

pAdvisor6 (hotel) and Yelp7 (restaurant). In each of the datasets, a record is com-

prised of user ID, item ID, overall rating in the scale of 1 to 5, and textual review.

After splitting reviews into sentences, we apply sentence grouping (in Algorithm 3)

over them to obtain a large amount of sentence groups. A group is removed if its

number of sentences is smaller than 5 so as to retain commonly seen explanations.

We then assign each of the remaining groups an ID that we call an explanation ID.

Eventually, a user-item pair may be connected to none, one or multiple explanation

IDs since the review of the user-item pair may contain none, one or multiple ex-

planation sentences. We remove the user-item pairs that are not connected to any

explanation ID, and the remaining records are thus user-item-explanation triplets.

The statistics of the three datasets are presented in Table 6.2. As it can be seen,

the data sparsity issue on the three datasets is very severe.

4http://ekzhu.com/datasketch/lsh.html
5http://jmcauley.ucsd.edu/data/amazon
6https://www.tripadvisor.com
7https://www.yelp.com/dataset/challenge
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Table 6.2: Statistics of the datasets. Density is #triplets divided by #users

× #items × #explanations.

Amazon TripAdvisor Yelp

# of users 109,121 123,374 895,729

# of items 47,113 200,475 164,779

# of explanations 33,767 76,293 126,696

# of (u, i) pairs 569,838 1,377,605 2,608,860

# of (u, i, e) triplets 793,481 2,618,340 3,875,118

# of explanations / (u, i) pair 1.39 1.90 1.49

Density (×10−10) 45.71 13.88 2.07

Table 6.3 shows 5 example explanations taken from the three datasets. As we

can see, all the explanations are quite concise and informative, not only because

LSH favors short text, but also because people tend to express their opinions using

common and concise phrases. This could prevent from overwhelming users, a critical

issue for explainable recommendation [46]. Also, short explanations can be mobile-

friendly, since it is difficult for a small screen to fit much content. Moreover, the

explanations from different datasets well suit the target application domains, such

as “a wonderful movie for all ages” for movies and “comfortable hotel with good

facilities” for hotels. Explanations with negative sentiment can also be observed,

e.g., “the place is awful”, which can be used to justify why some items are dis-

recommended [133].

6.5.2 Compared Methods

To evaluate the performance of explanation ranking task, where the user-item pairs

are given, we adopt the following baselines. Notice that, we omit the comparison

with Tucker Decomposition (TD) [113], because it takes cubic time to run and we

also find that it does not perform better than CD in our trial experiment.
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Table 6.3: Example explanations on the three datasets. Occurrence denotes the

number of records that contain the explanation.

Explanation Occurrence

Amazon Movies & TV

Great story 3307

Don’t waste your money 834

The acting is great 760

The sound is okay 11

A wonderful movie for all ages 6

TripAdvisor

Great location 61993

The room was clean 6622

The staff were friendly and helpful 2184

Bad service 670

Comfortable hotel with good facilities 8

Yelp

Great service 46413

Everything was delicious 5237

Prices are reasonable 2914

This place is awful 970

The place was clean and the food was good 6
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• RAND: It is a weak baseline that randomly picks up explanations from the

explanation collection E . It is devised to examine whether personalization is

needed for explanation ranking.

• RUCF: Revised User-based Collaborative Filtering. Because traditional CF

methods [100, 103] cannot be directly applied to the ternary data, we make

some modifications to their formula, following [50]. The similarity between

two users is measured by their associated explanation sets via Jaccard Index.

When predicting a score for the (u, i, e) triplet, we first find users associated

with the same item i and explanation e, i.e., Ui ∩Ue, from which we then find

the ones appearing in user u’s neighbor set Nu.

r̂u,i,e =
∑

u′∈Nu∩(Ui∩Ue)

su,u′ where su,u′ =
|Eu ∩ Eu′|
|Eu ∪ Eu′|

(6.5.15)

• RICF: Revised Item-based Collaborative Filtering. This method predicts a

score for a triplet from the perspective of items, whose formula is similar to

Eq. (6.5.15).

• CD: Canonical Decomposition [12] as shown in Eq. (6.3.4). This method

only predicts one score instead of two for the triplet (u, i, e), so its objective

function shown below is slightly different from ours in Eq. (6.3.7).

min
Θ

∑
u∈U

∑
i∈Iu

∑
e∈Eu,i

∑
e′∈E/Eu,i

− lnσ(r̂u,i,ee′) + λ ||Θ||2F (6.5.16)

where r̂u,i,ee′ = r̂u,i,e − r̂u,i,e′ is the score difference between a pair of explana-

tions.

• PITF: Pairwise Interaction Tensor Factorization [99]. It makes prediction for

a triplet based on Eq. (6.3.10), and its objective function is identical to CD’s

in Eq. (6.5.16).

To verify the effectiveness of the joint-ranking framework, in addition to our

method BPER-J, we also present the results of two baselines: CD [12] and PITF

[99]. Since CD and PITF are not originally designed to accomplish the two tasks
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of item ranking and explanation ranking together, we first allow them to make

prediction for a user-item pair (u, i) via the inner product of the associated latent

factors, i.e., r̂u,i = pTuqi, and then combine this task with explanation ranking in a

multi-task learning framework whose objective function is given below:

min
Θ

∑
u∈U

∑
i∈Iu

[ ∑
i′∈I/Iu

− lnσ(r̂u,ii′) +α
∑
e∈Eu,i

∑
e′∈E/Eu,i

− lnσ(r̂u,i,ee′)
]

+λ ||Θ||2F (6.5.17)

where r̂u,ii′ = r̂u,i − r̂u,i′ is the difference between a pair of items. We name them

CD-J and PITF-J respectively, where J denotes joint-ranking.

6.5.3 Implementation Details

To evaluate the performance of both recommendation and explanation, we adopt

four commonly used ranking-oriented metrics in recommender systems: Normalized

Discounted Cumulative Gain (NDCG), Precision (Pre), Recall (Rec) and F1. We

evaluate on top-10 ranking for both recommendation and explanation tasks.

We randomly divide each dataset into training (70%) and testing (30%) sets, and

guarantee that each user/item/explanation has at least one record in the training

set. The splitting process is repeated for 5 times. For validation, we randomly

draw 10% records from training set. After hyper-parameters tuning, the average

performance on the 5 testing sets is reported.

We implemented all the methods in Python. For TF-based methods, including

CD, PITF, CD-J, PITF-J, and our BPER and BPER-J, we search the dimension

of latent factors d from [10, 20, 30, 40, 50], regularization coefficient λ from [0.001,

0.01, 0.1], learning rate γ from [0.001, 0.01, 0.1], and maximum iteration number

T from [100, 500, 1000]. As to joint-ranking of CD-J, PITF-J and our BPER-J,

the regularization coefficient α on explanation task is searched from [0, 0.1, ..., 0.9,

1]. For the evaluation of joint-ranking, we first evaluate the performance of item

recommendation for users, followed by the evaluation of explanation ranking on

those correctly predicted user-item pairs. For our methods BPER and BPER-J, the

parameter µ that balances user and item scores for explanation ranking is searched
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from [0, 0.1, ..., 0.9, 1]. After parameter tuning, we use d = 20, λ = 0.01, γ = 0.01

and T = 500 for our methods, while the other parameters α and µ are dependent

on the datasets.

The configuration of BPER+ is slightly different, owing to the textual content

of the explanations. We adopted the pre-trained BERT from huggingface8, and

implemented the model in Python with PyTorch9. We set batch size to 128, d = 20

and T = 5. After parameter tuning, we set learning rate γ to 0.0001 on Amazon,

and 0.00001 on both TripAdvisor and Yelp.

6.6 Results and Analysis

In this section, we first present the comparison of our methods BPER and BPER+

with baselines regarding explanation ranking. Then, we study the capability of our

methods in dealing with varying data sparseness. Third, we show a case study of

explanation ranking for both recommendation and disrecommendation. Lastly, we

analyze the joint-ranking results of three TF-based methods.

6.6.1 Comparison of Explanation Ranking

Experimental results for explanation ranking on the three datasets are shown in

Table 6.4. We see that each method’s performance on the four metrics (i.e., NDCG,

Precision, Recall and F1) are fairly consistent across the three datasets. The method

RAND is among the weakest baselines, because it randomly selects explanations

without considering user and item information, which implies that the explanation

ranking task is non-trivial. CD performs even worse than RAND, because of the

sparsity issue in the ternary data (see Table 6.2), for which CD may not be able to

mitigate as discussed in Section 6.3.2. CF-based methods, i.e., RUCF and RICF,

largely advance the performance of RAND, as they take into account the informa-

tion of either users or items, which confirms the important role of personalization for

8https://huggingface.co/bert-base-uncased
9https://pytorch.org
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Figure 6.4: The effect of µ in BPER on explanation ranking in three datasets.

NDCG@10, Pre@10 and F1@10 are linearly scaled for better visualization.

explanation ranking. However, their performance is still limited due to data sparsity.

PITF and our BPER/BPER+ outperform the CF-based methods by a large margin,

as they not only address the data sparsity issue via their MF-like model structure,

but also take each user’s and item’s information into account via latent factors.

Most importantly, our method BPER significantly outperforms the strongest base-

line PITF, owing to its ability to produce two sets of scores, corresponding to users

and items respectively, and the parameter µ that can balance their relative impor-

tance to the explanation ranking task. Lastly, BPER+ further improves BPER on

most of the metrics across the three datasets, especially on NDCG that cares about

the ranking order, which can be attributed to the consideration of the explanations’

semantic features as well as BERT’s strong language modeling capability.
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Figure 6.5: Ranking performance of three TF-based methods w.r.t. varying

sparseness of training data on Amazon dataset.

Next, we further analyze the parameter µ of BPER that controls the contribu-

tions of user scores and item scores in Eq. (6.3.5). As it can be seen in Fig. 6.4,

the curves of NDCG, Precision, Recall and F1 are all bell-shaped, where the per-

formance improves significantly with the increase of µ until it reaches an optimal

point, and then it drops sharply. Due to the characteristics of different application

domains, the optimal points vary among the three datasets, i.e., 0.7 for both Ama-

zon and Yelp and 0.5 for TripAdvisor. We omit the figures of BPER+, because the

pattern is similar.

6.6.2 Results on Varying Data Sparseness

As discussed earlier, the sparsity issue of user-item-explanation triple-wise data is

severer than that of traditional user-item pair-wise data. To investigate how different

methods deal with varying spareness, we further divide the Amazon dataset into

different splits, where the ratio of the training triplets to the whole dataset ranges

from 30% to 70%. For comparison with our BPER and BPER+, we include the

most competitive baseline PITF. Fig. 6.5 shows the ranking performance of the
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Table 6.5: Top-5 explanations selected by BPER and PITF for two given user-item

pairs, corresponding to recommendation and disrecommendation, on Amazon Movies &

TV dataset. The ground-truth explanations are unordered. Matched explanations

are emphasized in italic font.

Ground-truth BPER PITF

Special effects Special effects Great special effects

Great story Good acting Great visuals

Wonderful movie This is a great movie Great effects

Great story Special effects

Great special effects Good movie

The acting is terrible The acting is terrible Good action movie

The acting is bad Low budget

The acting was horrible Nothing special

It’s not funny The acting is poor

Bad dialogue The acting is bad

three methods w.r.t. varying spareness. The ranking results are quite consistent on

the four metrics (i.e., NDCG, Precision, Recall and F1). Moreover, with the increase

of the amount of training triplets, the performance of all the three methods goes up

proportionally. Particularly, the performance gap between our BPER/BPER+ and

PITF is quite large, especially when the ratio of training data is small (e.g., 30%).

These observations demonstrate our methods’ better capability in mitigating data

sparsity issue, and also prove the rationale of our solution which converts triplets

into two groups of binary relation.

6.6.3 Case Study of Explanation Ranking

To better understand how explanation ranking works, we present a case study com-

paring our method BPER and the most effective baseline PITF on Amazon Movies
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& TV dataset in Table 6.5. The two cases in the table respectively correspond to

recommendation and disrecommendation. In the first case (i.e., recommendation),

there are three ground-truth explanations, praising the movie’s “special effects”,

“story” and overall quality. Generally speaking, the top-5 explanations resulting

from both BPER and PITF are positive, and relevant to the ground-truth, because

the two methods are both effective in terms of explanation ranking. However, since

PITF’s ranking ability is relatively weaker than our BPER, its explanations miss

the key feature “story” that the user also cares about.

In the second case (i.e., disrecommendation), the ground-truth explanation is

a negative comment about the target movie’s “acting”. Although the top expla-

nations made by both BPER and PITF contain negative opinions with regard to

this aspect, their ranking positions are quite different (i.e., top-3 for our BPER vs.

bottom-2 for PITF). Moreover, we notice that for this disrecommendation, PITF

places a positive explanation in the 1st position, i.e., “good action movie”, which

not only contradicts the other two explanations, i.e., “the acting is poor/bad”, but

also mismatches the disrecommendation goal. Again, this showcases our model’s

effectiveness for explanation ranking.

6.6.4 Effect of Joint-Ranking

We perform joint-ranking for three TF-based models, i.e., BPER-J, CD-J and PITF-

J. Because of the consistency between different datasets, we only show the experi-

mental results on Amazon and TripAdvisor. In Fig. 6.6, we study the effect of the

parameter α to both explanation ranking and item ranking in terms of F1 (results

on the other three metrics are consistent). In each sub-figure, the green dotted line

represents the performance of explanation ranking task without joint-ranking, whose

value is taken from Table 6.4. As we can see, all the points on the explanation curve

(in red) are above this line when α is greater than 0, suggesting that the explanation

task benefits from the recommendation task under the joint-ranking framework. In

particular, the explanation performance of CD-J improves dramatically under the
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Figure 6.6: The effect of α in three TF-based methods with joint-ranking on two

datasets. Exp and Rec respectively denote the Explanation and Recommendation

tasks. F1@10 for Rec is linearly scaled for better visualization.

joint-ranking framework, since its recommendation task suffers less from the data

sparsity issue than the explanation task as discussed in Section 6.3.2. It in turn

helps to better rank the explanations. Meanwhile, for the recommendation task, all

the three models degenerate to BPR when α is set to 0. Therefore, on the recom-

mendation curves (in blue), any points, whose values are greater than that of the

starting point, gain profits from the explanation task as well. All these observations

show the effectiveness of our joint-ranking framework in terms of enabling the two

tasks to benefit from each other.

In Table 6.6, we make a self-comparison of the three methods in terms of NDCG

and F1 (the other two metrics are similar). In this table, “Non-joint-ranking” corre-

sponds to each model’s performance with regard to explanation or recommendation

when the two tasks are individually learned. In other words, the explanation perfor-
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Table 6.6: Self-comparison of three TF-based methods on two datasets with and

without joint-ranking in terms of NDCG (N for short) and F1 (denoted as F).

Top-10 results are evaluated for both explanation (Exp) and recommendation

(Rec) tasks. The improvements are made by the best performance of each task

under joint-ranking over that without it (i.e., in this case the two tasks are

separately learned).

Amazon TripAdvisor

Exp (%) Rec (%�) Exp (%) Rec (%�)

N F N F N F N F

BPER-J

Non-joint-ranking 2.6 3.4 6.6 8.1 1.4 2.0 5.3 7.1

Joint-ranking
Best Exp 3.3 ↑ 4.6 ↑ 5.7 ↓ 7.1 ↓ 1.6 ↑ 2.4 ↑ 5.0 ↓ 6.4 ↓

Best Rec 2.6 l 3.5 ↑ 7.1 ↑ 8.7 ↑ 1.5 ↑ 2.1 ↑ 6.3 ↑ 8.0 ↑

Improvement (%) 26.9 35.3 7.6 7.4 14.3 20.0 18.9 11.3

CD-J

Non-joint-ranking 0.0 0.0 6.5 7.9 0.0 0.0 4.5 4.8

Joint-ranking
Best Exp 2.6 ↑ 3.7 ↑ 5.5 ↓ 6.7 ↓ 1.7 ↑ 2.4 ↑ 4.6 ↑ 5.2 ↑

Best Rec 1.9 ↑ 2.9 ↑ 6.8 ↑ 8.2 ↑ 9.6 ↑ 1.5 ↑ 4.9 ↑ 5.6 ↑

Improvement (%) Inf Inf 4.6 3.8 Inf Inf 8.9 16.7

PITF-J

Non-joint-ranking 2.4 3.2 6.5 7.7 1.2 1.8 4.3 4.7

Joint-ranking
Best Exp 3.0 ↑ 4.2 ↑ 6.4 ↓ 8.0 ↑ 2.0 ↑ 2.9 ↑ 6.0 ↑ 7.6 ↑

Best Rec 2.8 ↑ 3.7 ↑ 7.1 ↑ 8.5 ↑ 2.0 ↑ 2.8 ↑ 7.0 ↑ 8.9 ↑

Improvement (%) 25.0 31.3 9.2 10.4 66.7 61.1 62.8 89.4
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mance is taken from Table 6.4, and the recommendation performance is evaluated

when α = 0. “Best Exp” and “Best Rec” denote the best performance of each method

on respectively explanation task and recommendation task under the joint-ranking

framework. As we can see, when the recommendation performance is the best for

all the models with joint-ranking, the explanation performance is always improved.

Although minor recommendation accuracy is sacrificed when the explanation task

reaches the best performance, we can always find points where both of the two tasks

are improved, e.g., on the top left of Fig. 6.6 when α is in the range of 0.1 to 0.6

for BPER-J on Amazon. This again demonstrates our joint-ranking framework’s

capability in finding good solutions for both tasks.

6.7 Summary

In this chapter, we formulate the recommendation explanation problem as a ranking

task, with an attempt to achieve standard offline evaluation of explainability. To

facilitate the development of explainable recommendation, we construct three large

datasets, based on which we develop two effective models to address the data spar-

sity issue. With the quantitative measure of explainability as well as the effective

models, we design an item-explanation joint-ranking framework that can improve

the performance of both recommendation and explanation tasks. Besides improv-

ing the recommendation performance by providing explanations, the joint-ranking

framework could be potentially extended to other objectives, such as recommenda-

tion serendipity [21] and fairness [108].
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Chapter 7

Conclusion and Future Work

This thesis introduces datasets, approaches and metrics for explainable recommen-

dation. We first conclude the chapters that correspond to these contributions, and

then discuss open problems in this field as well as a broader scope of XAI.

7.1 Conclusion

In Chapter 3, we propose CAESAR (Context-Aware Explanation based on Super-

vised Attention for Recommendations) that can model explicit contextual features

via supervised attention mechanism to make the selected features match to a user’s

preference. We also design a two-level attention mechanism, i.e., feature-level and

context-level, to adaptively distinguish the importance of different contexts and their

related contextual features to both recommendation and explanation. Experimental

results via human evaluation suggest that the context-aware explanations are indeed

more useful than context-unaware explanations. Moreover, context-aware explana-

tion could be incorporated into conversational recommendation scenario [132, 25],

where recommendations can be better explained in accordance with a user’s mobile

environment.

In Chapter 4, we present a NEural TEmplate (NETE) generation approach to

improve explanation quality and flexibility simultaneously. It unifies the merits of

both natural language generation models and pre-defined templates. Experiments on
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real-world datasets provide substantial evidence that NETE is capable of producing

diverse, high-quality, and controllable natural language explanations. Furthermore,

our human evaluation confirms that the explanations from our model are perceived

helpful by users. This approach can be very useful in practice. For instance, when a

user proactively asks the system to explain a particular feature of a recommendation,

e.g., “price”, we would expect the model to generate a more targeted explanation.

Moreover, our proposed four new metrics for explainable recommendation could

also benefit other fields, such as dialogue systems [128, 135] which sometimes return

universal reply, e.g., “I do not know”. Then, we can adopt the sentence diversity

metric to quantitatively measure this issue.

In Chapter 5, we design a simple and effective learning objective to address the

problem that the well-known Transformer model could not make use of user and

item IDs for recommendation explanation generation. We evaluate the explanations

generated by our PETER (PErsonalized Transformer for Explainable Recommenda-

tion) on not only text quality metrics, but also metrics that focus on explainability

from the angle of item features. Extensive experiments show that PETER can out-

perform state-of-the-art baselines on large datasets. Our solution may shed light on

a broader scope of fields that also need personalization, e.g., personalized conversa-

tional systems. In addition, it may point out a way for Transformer to deal with

heterogeneous inputs, e.g., text and images in multi-modal AI.

In Chapter 6, we construct three benchmark datasets for explanation ranking, on

which explainability can be evaluated quantitatively, just as recommendation task.

This would enable standard offline evaluation of explainable recommendation, and

also encourage researchers to develop more effective models. To mitigate the sparsity

issue in the user-item-explanation data, we propose to perform two sets of matrix

factorization, and apply this idea to two types of models. Based on the data and

models, we further propose an item-explanation joint-ranking framework to improve

the recommendation performance by explanation, and study the relationship of the

two tasks.
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7.2 Future Work

In Chapter 6, we show that the recommendation performance can be improved by

adjusting the explanation task in the joint-ranking formulation. What behind the

improved recommendation accuracy is that some particular explanations may be

selected purposely. A problem follows up: are these explanations faithful to the

recommendations? What if they are chosen by the model simply because they

can cheat and manipulate users to achieve the goal of improving clicking rates?

This would be unethical, and also make the recommender system untrustworthy

once discovered. Hence, further measures should be taken to address this type of

unintentionally negative and harmful effect [33].

Then, we discuss the potential bias issue in explainable recommendation. In this

thesis, we design two natural language explanation generation approaches based

on respectively RNN (Chapter 4) and Transformer (Chapter 5). More recently,

we develop a more effective version [68] based on the pre-trained language model

GPT-2 [95] (not included in this thesis). For the former, a number of RNN-based

explanation approaches [81, 109] employ Word2Vec [86, 87] to initialize the word

embeddings, but gender bias is found in Word2Vec [9]. For example, such an asso-

ciation can be obtained via vector operation: “man” - “doctor” = “woman” - “nurse”.

For the latter, i.e., pre-trained models, recent studies [106, 74] report that they ex-

hibit societal bias towards certain groups of people. For example, given the prefix

“the man (or woman) performing surgery is a”, the model may produce “doctor (or

nurse)” [74]. Although bias or stereotype does exist in real world, machines are ex-

pected to be neutral, inclusive, fair and unbiased, otherwise this type of issue could

be amplified by their wide deployment. As a response, we should take measures to

mitigate bias and to achieve fairness.

There are some works [72, 73] that study fairness in recommender systems, but

bias and fairness in explainable recommendation have received relatively less atten-

tion. In this regard, we have the following concerns. Does the bias issue as observed

in other applications (e.g., conversational systems [106]) also exist in explanation

126



generation models? Further, could the generated explanations possess bias against

people who have different demographic attributes, such as gender, age, income, reli-

gion and race? In what form does bias exist in pre-trained models? This then leads

back to the key problem of interpretability in XAI. Since pre-trained models have

been successfully adapted to a variety of AI applications, such as search engines

[140] and conversational systems [130], addressing the bias issue in one application

would shed light on the others. More importantly, reducing bias would also promote

fairness, benefit many people, and even make the world a better place.
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